Epilepsia
-
The management of epilepsy in children is particularly challenging when seizures are resistant to antiepileptic medications, or undergo many changes in seizure type over time, or have comorbid cognitive, behavioral, or motor deficits. Despite efforts to classify such epilepsies based on clinical and electroencephalographic criteria, many children never receive a definitive etiologic diagnosis. Whole exome sequencing (WES) is proving to be a highly effective method for identifying de novo variants that cause neurologic disorders, especially those associated with abnormal brain development. Herein we explore the utility of WES for identifying candidate causal de novo variants in a cohort of children with heterogeneous sporadic epilepsies without etiologic diagnoses. ⋯ The finding that 7 of 10 children carried de novo mutations in genes of known or plausible clinical significance to neuronal excitability suggests that WES will be of use for the molecular genetic diagnosis of sporadic epilepsies in children, especially when seizures are of early onset and difficult to control.
-
In relatively small series, autosomal dominant lateral temporal epilepsy (ADLTE) has been associated with leucine-rich, glioma-inactivated 1 (LGI1) mutations in about 50% of the families, this genetic heterogeneity being probably caused by differences in the clinical characteristics of the families. In this article we report the overall clinical and genetic spectrum of ADLTE in Italy with the aim to provide new insight into its nosology and genetic basis. ⋯ A large number of ADLTE families has been collected over a 10-year period in Italy, showing a typical and homogeneous phenotype. LGI1 mutations have been found in only one third of families, clinically indistinguishable from nonmutated pedigrees. The estimate of penetrance and OR, however, demonstrates a significantly lower penetrance rate and relative disease risk in non-LGI1-mutated families compared with LGI1-mutated pedigrees, suggesting that a complex inheritance pattern may underlie a proportion of these families.
-
Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. ⋯ Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS.
-
Functional magnetic resonance imaging (fMRI)-based resting functional connectivity is well suited for measuring slow correlated activity throughout brain networks. Epilepsy involves chronic changes in normal brain networks, and recent work demonstrated enhanced resting fMRI connectivity between the hemispheres in childhood absence epilepsy. An animal model of this phenomenon would be valuable for investigating fundamental mechanisms and testing therapeutic interventions. ⋯ These findings suggest that activity-dependent plasticity may lead to long-term changes in epileptic networks even at rest. The results show a marked difference between the epileptic and nonepileptic animals in cortical-cortical connectivity, indicating that this may be a useful interictal biomarker associated with the epileptic state.