Cancer research
-
The purpose of this study was to engineer a bivalent single-chain anticarcinoembryonic antigen (CEA) antibody and an interleukin 2 (IL-2) fusion protein derivative for selective tumor targeting of cytokines. The variable domains of a high affinity anti-CEA antibody, T84.66, were used to form a single-gene-encoded antibody [single-chain variable fragment joined to the crystallizable fragment, Fc (scFvFc)]. The fusion protein (scFvFc. ⋯ Therapy of CEA-expressing tumors was improved after i.v. administration of the fusion protein (P = 0.0001). These studies indicate that anti-CEA antibody-directed cytokine targeting may offer an effective treatment for CEA-expressing carcinomas. The availability of an immunocompetent CEA transgenic mouse model will also help to determine the immunotherapeutic properties of these fusion proteins.
-
Cancer testis (CT) antigens are particularly interesting candidates for cancer vaccines. However, T-cell reactivity to CT antigens has been detected only occasionally in cancer patients, even after vaccination. A new group of CT antigens has been recently identified using the SEREX technique based on immunoscreening of tumor cDNA expression libraries with autologous sera. ⋯ NY-ESO-1-specific CD8+ T cells were also detectable in peptide-stimulated peripheral blood mononuclear cells from some seronegative patients. Whereas the frequencies of NY-ESO-1-specific CD8+ T cells in circulating lymphocytes were usually below the limit of detection by tetramer staining, the presence of NY-ESO-1 CD8+ T cells displaying a memory phenotype was clearly detectable ex vivo in blood from a seropositive patient over an extended period of time. These results indicate that sustained CD8+ T-cell responses to CT antigens can naturally occur both locally and systemically in melanoma patients.
-
Ceramide has been implicated as an important component of radiation-induced apoptosis of human prostate cancer cells. We examined the role of the sphingolipid metabolites--ceramide, sphingosine, and sphingosine-1-phosphate--in susceptibility to radiation-induced apoptosis in prostate cancer cell lines with different sensitivities to gamma-irradiation. Exposure of radiation-sensitive TSU-Pr1 cells to 8-Gy irradiation led to a sustained increase in ceramide, beginning after 12 h of treatment and increasing to 2.5- to 3-fold within 48 h. ⋯ Moreover, we found that although irradiation alone did not increase sphingosine levels in LNCaP cells, tumor necrosis factor alpha plus irradiation induced significantly higher sphingosine levels and markedly reduced intracellular levels of sphingosine-1-phosphate. The elevation of sphingosine levels either by exogenous sphingosine or by treatment with the sphingosine kinase inhibitor N,N-dimethylsphingosine induced apoptosis and also sensitized LNCaP cells to gamma-irradiation-induced apoptosis. Our data suggest that the relative levels of sphingolipid metabolites may play a role in determining the radiosensitivity of prostate cancer cells, and that the enhancement of ceramide and sphingosine generation could be of therapeutic value.
-
Recent evidence from our laboratory has demonstrated that alpha1-adrenoceptor antagonists doxazosin and terazosin induced apoptosis in prostate epithelial and smooth muscle cells in patients with benign prostatic hypertrophy (BPH; J. Urol., 159: 1810-1815, 1998; J. Urol., 161: 2002-2007, 1999). ⋯ Furthermore, an in vivo efficacy trial demonstrated that doxazosin administration (at tolerated pharmacologically relevant doses) in SCID mice bearing PC-3 prostate cancer xenografts resulted in a significant inhibition of tumor growth. These findings demonstrate the ability of doxazosin and terazosin (but not tamsulosin) to suppress prostate cancer cell growth in vitro and in vivo by inducing apoptosis without affecting cell proliferation. This evidence provides the rationale for targeting both drugs, already in clinical use and with established adverse-effect profiles, against prostatic tumors for the treatment of advanced prostate cancer.
-
Eicosanoids modulate the interaction of tumor cells with various host components in cancer metastasis. Their synthesis involves the release of arachidonic acid (AA) from cellular phospholipids by phospholipase A2 (PLA2), followed by metabolism by cyclooxygenases (COXs) and lipooxygenases (LOXs). This study aimed to identify the pathway(s) of AA metabolism that are required for the invasion of prostate tumor cells. ⋯ Cells that received 4-BPB, IB, or NS398, but not esculetin showed a significant reduction in the levels of proMMP-2, MMP-9, and proMMP-9 in the culture medium. DU-145 cells did not secrete TIMP-1, and the drugs did not alter the secretion of TIMP-2. This work highlights the role played by COX in disturbing the balance between MMPs and TIMPs in prostate cancer cells, and it points to the potential use of COX inibitors, especially COX-2 selective inhibitors, in the prevention and therapy of prostate cancer invasion.