Cancer research
-
Eleven novel spermidine (SPD) derivatives were synthesized as potential anticancer agents and evaluated for their ability to compete with [3H]SPD for cellular uptake, to inhibit cell growth, to affect polyamine biosynthesis, to suppress enzyme activity, and to substitute for SPD in supporting growth of cultured L1210 leukemia cells. The compounds included a series of N4-SPD derivatives (N4-methyl-SPD, N4-ethyl-SPD, N4-acetyl-SPD, N4-hexyl-SPD, N4-hexanoyl-SPD, N4-benzyl-SPD, and N4-benzoyl-SPD) and a series of N1,N8-SPD derivatives [N1,N8-bis(ethyl)-SPD, N1,N8-bis(acetyl)-SPD, N1,N8-bis(propyl)-SPD, and N1,N8-bis(propionyl)-SPD]. Uptake studies revealed N4-alkyl derivatives to be the most effective competitive inhibitors of [3H]SPD uptake (Ki, 26 to 43 microM) followed by N1,N8-alkyl derivatives (Ki, 71 to 115 microM), then N4-acyl derivatives (Ki, 115 to greater than 500 microM), and N1,N8-acyl derivatives (Ki, greater than 500 microM). ⋯ As a measure of regulatory potential of the derivatives, ornithine decarboxylase was assayed in cells treated for 24 h and compared to the effects of 10 microM SPD which reduced the enzyme activity by 80%. None of the N4-SPD derivatives affected ornithine decarboxylase activity, while N1,N8-bis(ethyl)- and (propyl)-SPD were nearly as effective as SPD. Apparently, the central amine of the molecule is critical for regulatory function.(ABSTRACT TRUNCATED AT 400 WORDS)
-
The optimum integration of chemotherapy and irradiation is of potential clinical significance in the treatment of ovarian cancer. A series of human ovarian cancer cell lines have been developed in which dose-response relationships to standard anticancer drugs have been determined, and the patterns of cross-resistance between these drugs and irradiation have been established. By stepwise incubation with drugs, sublines of A2780, a drug-sensitive cell line, have been made 100-fold, 10-fold, and 10-fold more resistant to Adriamycin (2780AD), melphalan (2780ME), and cisplatin (2780CP). ⋯ However, the GSH level in 2780AD is only minimally higher than that in A2780 (2.94 nmol/10(6) cells). Buthionine sulfoximine, a specific inhibitor of GSH synthesis, significantly increases the radiation sensitivity of 2780ME (changing the DO from 143 to 95) and 2780CP to a lesser extent, suggesting that intracellular GSH levels may play an important role in the radiation response of certain neoplastic cells. These results suggest that the sequential use of irradiation following chemotherapy with melphalan and cisplatin may be less effective than a combined modality approach, which integrates radiation and chemotherapy prior to the development of drug resistance and cross-resistance to irradiation.
-
We have studied the potential use of immunotoxins (ITs) for therapeutic treatment of human tumors in an experimental model of human neoplasia. We tested intact ricin IT for its antitumor activity against established tumors. CEM, a human T-cell leukemia line expressing an Mr 67,000 cell surface antigen, and Daudi, a human B-cell lymphoma line which does not express the antigen, were found to be consistently tumorigenic in nude mice. ⋯ In contrast, in vitro experiments demonstrated that T101-A chain IT plus activating agents had potent and selective cytotoxic effect against CEM cells. We conclude that ITs are specifically toxic to established tumors. Although selectivity is not absolute, ITs exhibit potential as a new class of antitumor reagents.
-
Uptake characteristics and growth-inhibitory effects of methylglyoxal bis(guanylhydrazone) (MGBG), a competitive inhibitor of S-adenosylmethionine decarboxylase, were investigated in 9L rat brain tumor cells and in V79 hamster lung cells. Proliferation of 9L cells was only slightly inhibited by treatment with 40 microM MGBG alone, but when used in combination with 0.5 mM alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, proliferation was much more effectively inhibited. The intracellular concentration of MGBG was approximately 2-fold higher 4 days after cells were treated with both DFMO and MGBG, either simultaneously or when MGBG was added after a 48-hr DFMO pretreatment, than that in cells treated with MGBG alone. ⋯ Pretreatment with DFMO did not increase MGBG-induced inhibition of pyruvate oxidation in V79 cells. These results show that, compared with V79 cells, the decreased sensitivity of 9L cells to MGBG may be related to decreased intracellular MGBG accumulation but not to cellular permeation such as carrier transport. Results of measurements of both polyamine levels and mitochondrial function indicate that V79 cells may be more susceptible to nonpolyamine-dependent effects of MGBG than are 9L cells.