Cancer research
-
Chronic myeloid leukemia (CML) is a myeloproliferative disease in which BCR/ABL enhances survival of leukemic cells through modulation of proapoptotic and antiapoptotic molecules. Recent data suggest that proapoptotic Bcl-2-interacting mediator (Bim) plays a role as a tumor suppressor in myeloid cells, and that leukemic cells express only low amounts of this cell death activator. We here show that primary CML cells express significantly lower amounts of bim mRNA and Bim protein compared with normal cells. ⋯ Interestingly, MG132 up-regulated the expression of bim mRNA and Bim protein and suppressed the growth of Ba/F3 cells containing wild-type BCR/ABL or imatinib-resistant mutants of BCR/ABL. To show functional significance of "Bim reexpression," a Bim-specific small interfering RNA was applied and found to rescue BCR/ABL-transformed leukemic cells from imatinib-induced cell death. In summary, our data identify BCR/ABL as a Bim suppressor in CML cells and suggest that reexpression of Bim by novel tyrosine kinase inhibitors, proteasome inhibition, or by targeting signaling pathways downstream of BCR/ABL may be an attractive therapeutic approach in imatinib-resistant CML.
-
To characterize the radiation-enhancing effects on human cancer cells and underlying mechanisms of celecoxib, a cyclooxygenase (COX)-2 selective inhibitor, and to ascertain whether its effects are COX-2 dependent. Clonogenic cytotoxicity assays and radiation survival assays after treatment with celecoxib +/- radiation were done on four human cancer cell lines that expressed differential COX-2 levels. Stably COX-2 knocked down or overexpressed cell lines were developed, and clonogenic assays, apoptosis assays, or cell cycle change measurements were conducted after treatment with celecoxib +/- radiation. ⋯ Celecoxib's radiation-enhancing effects seem to occur in a COX-2 expression-dependent manner in the cancer cells. This effect does not seem to be the result of reduced PGE2 generation. Celecoxib may exert an inhibitory effect on enhanced radiation-induced G2-M arrest in the COX-2-overexpressing cells, which may allow the arrested cells to enter mitosis and die after radiation, but may also further enhance radiation-induced G2-M arrest in the COX-2 low-expressing cells, by virtue of another mechanism.
-
Prostate cancer is unique in that bone is often the only clinically detectable site of metastasis. Prostate tumors that have metastasized to bone frequently induce bone pain which can be difficult to fully control as it seems to be driven simultaneously by inflammatory, neuropathic, and tumorigenic mechanisms. As nerve growth factor (NGF) has been shown to modulate inflammatory and some neuropathic pain states in animal models, an NGF-sequestering antibody was administered in a prostate model of bone cancer where significant bone formation and bone destruction occur simultaneously in the mouse femur. ⋯ In contrast, this therapy did not influence tumor-induced bone remodeling, osteoblast proliferation, osteoclastogenesis, tumor growth, or markers of sensory or sympathetic innervation in the skin or bone. One rather unique aspect of the sensory innervation of bone, that may partially explain the analgesic efficacy of anti-NGF therapy in relieving prostate cancer-induced bone pain, is that nearly all nerve fibers that innervate the bone express trkA and p75, and these are the receptors through which NGF sensitizes and/or activates nociceptors. The present results suggest that anti-NGF therapy may be effective in reducing pain and enhancing the quality of life in patients with prostate tumor-induced bone cancer pain.
-
We have shown previously that naturally occurring isothiocyanates derived from cruciferous vegetables and their N-acetylcysteine conjugates inhibit lung adenoma formation induced by tobacco carcinogens in A/J mice at the post-initiation stage. The tumor-inhibitory activity by these compounds is linked with activation of activator protein and induction of apoptosis in lung tissues, suggesting that these compounds may also inhibit the development of adenomas to adenocarcinomas in lung. In this study, the chemopreventive activity of phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates during progression of lung adenomas to malignant tumors was investigated in A/J mice. ⋯ Unlike lung adenocarcinomas, both incidences and multiplicities of lung adenomas were not much affected by treatment with isothiocyanates or their conjugates. Immunohistochemical examination of the lung tumors from all time points indicated that significant reduction in proliferating cell nuclear antigen and induction of apoptosis (terminal nucleotidyl transferase-mediated nick end labeling and caspase-3) were observed in the isothiocyanate and isothiocyanate-N-acetylcysteine-treated groups that showed inhibition of the development of lung adenocarcinomas. The results of the study provide a basis for future evaluation of the potential of phenethyl isothiocyanate and sulforaphane and their conjugates as chemopreventive agents in smokers and ex-smokers with early lung lesions.
-
The fact that small cell lung cancer (SCLC) is commonly incurable despite being initially responsive to chemotherapy, combined with disappointing results from a recent SCLC clinical trial with imatinib, has intensified efforts to identify mechanisms of SCLC resistance. Adhesion to extracellular matrix (ECM) is one mechanism that can increase therapeutic resistance in SCLC cells. To address whether adhesion to ECM increases resistance through modulation of signaling pathways, a series of SCLC cell lines were plated on various ECM components, and activation of two signaling pathways that promote cellular survival, the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) pathway, was assessed. ⋯ Combining imatinib with LY294002 or rapamycin but not U0126 caused greater than additive increases in apoptosis compared with apoptosis caused by the inhibitor or imatinib alone. Similar results were observed when adenoviruses expressing mutant Akt were combined with imatinib, or when LY294002 was combined with cisplatin or etoposide. These studies identify laminin-mediated activation of the PI3K/Akt/mTOR pathway as a mechanism of cellular survival and therapeutic resistance in SCLC cells and suggest that inhibition of the PI3K/Akt/mTOR pathway is one strategy to overcome SCLC resistance mediated by ECM.