Cancer research
-
Prostate carcinoma is a common malignancy among males that results in high morbidity and mortality. Here, we have evaluated the capacity of nucleoside analogue BCH-4556 [beta-L-(-)-dioxolane-cytidine] to control prostate cancer progression in our syngeneic model of rat prostate cancer using the rat prostate cancer cell line Dunning R3227 Mat Ly Lu. Different concentrations (50 microM-1 mM) of BCH-4556 resulted in a marked decrease and, eventually, a complete arrest of Mat Ly Lu cell growth in vitro. ⋯ In contrast, experimental animals receiving BCH-4556 showed a marked decrease in tumor volume and metastases after the last injection of BCH-4556. The maximum dose of BCH-4556 (75 mg/kg twice a day) caused a complete arrest in tumor growth that was maintained for up to 4-6 days without any evidence of cytotoxicity. These antitumor effects of BCH-4556 were more marked than those of doxorubicin in blocking tumor growth in this model of prostate cancer, and it continued to be effective following three cycles of treatment, without manifesting any signs of drug resistance.
-
The ability to selectively target liposomal anticancer drugs via specific ligands against antigens expressed on malignant cells could improve the therapeutic effectiveness of the liposomal preparations as well as reduce adverse side effects associated with chemotherapy. Long-circulating formulations of liposomes containing lipid derivatives of poly(ethyleneglycol) [sterically stabilized liposomes (SLs)] have been described previously, and new techniques have recently been developed for coupling monoclonal antibodies (Abs) at the poly(ethyleneglycol) terminus of these liposomes. Ab-targeted SLs [immunoliposomes (SILs)] containing entrapped anticancer drugs are predicted to be useful in the treatment of hematological malignancies such as B-cell lymphomas or multiple myeloma, in which the target cells are present in the vasculature. ⋯ Therapeutic experiments in severe combined immunodeficient mice implanted with Namalwa cells by the i.v. or i.p. routes resulted in significantly increased effectiveness of DXR-SIL[anti-CD19] compared to similar amounts of free DXR, DXR-SL (no Ab), or isotype-matched nonspecific Abs attached to DXR-SL. Single doses (3 mg/kg) of DXR-SIL[anti-CD19] administered i.v. resulted in a significantly improved therapeutic benefit, including some long-term survivors. From our results, we infer that targeted anti-CD19 liposomes containing the anticancer drug DXR may be selectively cytotoxic for B cells and may be useful in the selective elimination of circulating malignant B cells in vivo.
-
A prospective study of N-acetyltransferase genotype, red meat intake, and risk of colorectal cancer.
Carcinogenic heterocyclic amines are activated by N-acetyltransferase (NAT) enzymes, encoded by NAT1 and NAT2, to genotoxic compounds that can form DNA adducts in the colon epithelium. We have examined the relation of polymorphisms in the genes coding for both enzymes to risk of colorectal cancer and the gene-environment interaction with red meat intake among participants in the prospective Physicians' Health Study. Baseline blood samples from 212 men subsequently diagnosed with colorectal cancer during 13 years of follow-up were genotyped, along with 221 controls. ⋯ We observed a stronger association of red meat intake with cancer risk among NAT rapid acetylators, especially among men 60 years old or older. Among those men who were rapid acetylators for both NAT1 and NAT2, consumption of >1 serving of red meat per day was associated with a relative risk of 5.82 (95% CI, 1.11-30.6) compared with consumption of < or = 0.5 serving per day (P, trend = 0.02). These prospective data, which need to be confirmed in other studies, suggest that polymorphisms in the NAT genes confer differential susceptibility to the effect of red meat consumption on colorectal cancer risk.
-
Recombinant humanized anti-HER2 antibody, rhuMAb HER2, inhibits the growth of breast cancer cells overexpressing HER2 and has clinical activity. We explored in preclinical models its capacity to enhance the tumoricidal effects of paclitaxel and doxorubicin. In cultures of naturally HER2-overexpressing cancer cells, rhuMAb HER2 inhibited growth and enhanced the cytotoxic effects of paclitaxel. ⋯ In combination studies, treatment with paclitaxel and rhuMAb HER2 or doxorubicin and rhuMAb HER2 resulted in greater inhibition of growth than that observed with any agent alone. The combination of paclitaxel and rhuMAb HER2 resulted in the highest tumor growth inhibition and had a significantly superior complete tumor regression rate when compared with either paclitaxel or rhuMAb HER2 alone. Clinical trials that are built on these results are under way.
-
An important biochemical hallmark of apoptosis is the cleavage of chromatin into oligonucleosomal fragments. Here, we purified a Mg2+-dependent endonuclease from etoposide-treated HL-60 cells undergoing apoptosis. High levels of Mg2+-dependent endonuclease activity were detected in etoposide-treated HL-60 cells, and this activity increased in a time-dependent manner following etoposide treatment. ⋯ This enzyme introduced single- and double-strand breaks into SV40 DNA and produced internucleosomal DNA cleavage in isolated nuclei from untreated cells. The DNA breaks were terminated with 3'-OH, consistent with characteristic products of apoptotic chromatin fragmentation. We propose to designate this Mr 34,000 Mg2+-dependent endonuclease AN34 (apoptotic nuclease Mr 34,000).