Military medicine
-
The vestibular system is essential for normal postural control and balance. Because of their proximity to the cochlea, the otolith organs are vulnerable to noise. We previously showed that head jerks that evoke vestibular nerve activity were no longer capable of inducing a response after noise overstimulation. The present study adds a greater range of jerk intensities to determine if the response was abolished or required more intense stimulation (threshold shift). ⋯ These data suggest that noise overstimulation, such as can occur in the military, could introduce an increased risk of imbalance that should be evaluated before returning a subject to situations that require normal agility and motion. Moreover, although there is recovery with time, some dysfunction persists for extended periods.
-
Although opioids are widely prescribed for pain, in many circumstances, they have only modest efficacy. Preclinical studies have shown that chemokines, immune mediators released during tissue injury and inflammation, can desensitize opioid receptors and block opioid analgesia by a process termed "heterologous desensitization." The present studies tested the hypothesis that in evoked pain, certain chemokine receptor antagonists (CRAs), given with a submaximal dose of morphine, would result in enhanced morphine potency. ⋯ These results support the potential of a new "opioid-sparing" approach for pain treatment, which combines CRAs with reduced doses of morphine.
-
Commercially available junctional tourniquets (JTQs) have several drawbacks. We developed a low-cost, compact, easy to apply JTQ. The aim of this study was to assess the tourniquets' safety and efficacy in a swine model of controlled hemorrhage. ⋯ The tourniquet achieved effective arterial occlusion with minimal tissue damage, similar to reports of other JTQs. Subjected to further human trials, the tourniquet might be a suitable candidate for widespread frontline deployment because of its versatility, compactness, and affordable design.
-
Infection frequently complicates the treatment of combat-related wounds, impairs healing, and leads to worse outcomes. To better manage wound infections, antimicrobial therapies that are effective against biofilm and designed for direct wound application are needed. The primary objective of this work was to evaluate a chitosan matrix for delivery of two engineered antimicrobial peptides, (ASP)-1 and ASP-2, to treat biofilm-associated bacteria. A secondary objective was to determine whether replacing the levorotatory (L) form amino acids in ASP-2 with dextrorotatory (D) form amino acids would impact peptide activity. ⋯ Chitosan serves as an effective delivery platform for ASP-1 and ASP-2 to treat biofilm-embedded bacteria and warrants further development as a topical treatment.
-
To establish a rabbit model of posterior penetrating eye injury as a platform to test potential therapeutics. ⋯ These data show that ocular fibrosis can be detected within 14 days after initial injury, with more severe fibrosis detected at 28 days postinjury. These results will be used to determine the optimal time points for later studies designed to test treatment strategies.