Military medicine
-
Dynamic alignment of lower limb prostheses is subjective and time-consuming. Compensatory gait strategies caused by prosthesis misalignment can negatively affect lower limb amputees who cannot access a certified prosthetist for alignment adjustments. The objective of this study is to evaluate a novel six-degrees-of-freedom passive transtibial prosthetic adapter that self-aligns during various phases of gait. This self-aligning adapter may benefit service members and veterans stationed or living far from a clinical facility. ⋯ Subjects maintained similar walking speeds and experienced greater gait symmetry and reduced sagittal plane peak moments with the self-aligning adapter when exposed to misalignments. These trends suggest a benefit to transtibial amputees from a reduction in secondary gait effects from prosthesis misalignments. Additionally, a wider range of acceptable prosthesis alignments may be possible with the self-aligning adapter. Subsequent trials are underway to evaluate the self-aligning adapter in real-world environments like walking on uneven terrains, stairs, ramps, and abrupt turns.
-
The purpose of this pilot study was to obtain preliminary data to culturally adapt the Veteran Health Administration Traumatic Brain Injury (TBI) assessment instruments for the Hispanic Veteran population. A qualitative analysis explored the cognitive processes used by Hispanic Veterans whose preferred language was Spanish to understand a specific set of screening questions within the Initial TBI Screening, the Comprehensive TBI Evaluation, the Neurobehavioral Symptom Inventory (NSI), and the La Trobe Communication Questionnaire (LTCQ). ⋯ Current findings highlight the importance of using linguistically and culturally appropriate materials upon evaluating Hispanic Veterans with a suspected TBI who have Spanish as their primary or preferred language.
-
Traumatic peripheral nerve injuries (TPNIs) are increasingly prevalent in battlefield trauma, and the functional recovery with TPNIs depends on axonal continuity. Although the physical examination is the main tool for clinical diagnosis with diagnostic work up, there is no diagnostic tool available to differentiate nerve injuries based on axonal continuity. Therefore, treatment often relies on "watchful waiting," and this leads to muscle weakness and further reduces the chances of functional recovery. 4-aminopyridine (4-AP) is clinically used in multiple sclerosis patients for walking performance improvement. Preliminary results in conscious mice suggested a diagnostic role of 4-AP in distinguishing axonal continuity. In this study, we thought to evaluate the diagnostic potential of 4-AP on the axonal continuity in unawake/sedated animals. ⋯ We conclude that 4-AP could be a promising diagnostic agent in differentiating TPNI based on axonal continuity.
-
The use of photobiomodulation has been proposed to improve wound healing for the last two decades. Recent development in photobiomodulation has led to the development of a novel biophotonic platform that utilizes fluorescent light energy (FLE) within the visible spectrum of light for healing of skin inflammation and wounds. ⋯ The results presented in this article are encouraging and suggest that FLE balances different stages of wound healing, which opens the door to initiating randomized controlled clinical trials for establishing the efficacy of FLE treatment in different phases of wound healing of second-degree burns.
-
Flexor tendon injuries are common hand injuries among the military population often resulting in functional impairment. Flexor tendon gliding friction has been linked to adhesion formation, especially with the use of extrasynovial grafts. Carbodiimide-derivatized hyaluronic acid with gelatin (cd-HA-gelatin) can reduce gliding friction of the tendon graft; however, the effects of gelatin molecular weight (MW) have not been studied. The turkey model has been shown to better match humans, but extrasynovial tendons are unavailable. The purpose of this study was to (1) manually roughen turkey flexor digitorum profundus (FDP) tendons to simulate extrasynovial tendons and (2) investigate the effects of gelatin MW on tendon friction. ⋯ We have developed a method to roughen synovial FDP tendons to create extrasynovial-like tendons for lubrication material evaluations. Cd-HA-gelatin effectively reduces tendon friction in this model. Our data suggest medium or low MW gelatin may provide a better reduction in friction compared with high MW gelatin.