Military medicine
-
Simulation-based medical training has been shown to be effective and is widely used in civilian hospitals; however, it is unclear how widely and how effectively simulation is utilized in the U.S. Military Health System (MHS). The current operational state of medical simulation in the MHS is unknown, and there remains a need for a system-wide assessment of whether and how the advances in simulation-based medical training are employed to meet the evolving needs of the present-day warfighter. Understanding the types of skills and methods used within simulation programs across the enterprise is important data for leaders as they plan for the future in terms of curriculum development and the investment of resources. The aim of the present study is to survey MHS simulation programs in order to determine the prevalence of skills taught, the types of learners served, and the most common methodologies employed in this worldwide health care system. ⋯ The survey demonstrated that the most common skills taught were all related to point of injury combat casualty care and addressed the most common causes of death on the battlefield. The availability of training in medic skills, nursing skills, and advanced provider skills were similar in small, medium, and large programs. However, medium and small programs were less likely to deliver training for advanced providers and GMOs compared to larger programs. Overall, this study found that simulation-based medical training in the MHS is focused on medic and nursing skills, and that large programs are more likely to offer training for advanced providers and GMOs. Potential gaps in the availability of existing training are identified as over 50% of skills included in the nursing, advanced provider, and GMO skill categories are not covered by at least 80% of sites serving those learners.
-
Sexual and reproductive health is critical for the readiness of the warfighter, as costs of sexually transmitted infections and unintended pregnancy result in added health care costs, lost mission time, and impact on morale. The Multiphase Optimization Strategy (MOST) is an engineering-inspired framework used to optimize biobehavioral interventions. The Military Active-Duty Reproductive and Sexual Health (MARSH) research team applied the MOST framework to develop "Mission Wellness"-an electronic health intervention to promote sexual and reproductive health within the U.S. Military. ⋯ In line with the iterative nature of MOST, the lessons learned during the optimization trial led the MARSH team to return "Mission Wellness" to the preparation phase. The utilization of mixed (i.e., qualitative and quantitative) research methods and engagement with stakeholders at multiple levels of the military enterprise provided the information necessary to further optimize "Mission Wellness." This programmatic approach also provides a blueprint for the development of research design and testing in military health care balancing rigor and agility.
-
Auditory disabilities like tinnitus and hearing loss caused by exposure to blast overpressures are prevalent among military service members and veterans. The high-pressure fluctuations of blast waves induce hearing loss by injuring the tympanic membrane, ossicular chain, or sensory hair cells in the cochlea. The basilar membrane (BM) and organ of Corti (OC) behavior inside the cochlea during blast remain understudied. A computational finite element (FE) model of the full human ear was used by Bradshaw et al. (2023) to predict the motion of middle and inner ear tissues during blast exposure using a 3-chambered cochlea with Reissner's membrane and the BM. The inclusion of the OC in a blast transmission model would improve the model's anatomy and provide valuable insight into the inner ear response to blast exposure. ⋯ This microscale model is the first FE model of the OC to be connected to a macroscale model of the ear, forming a full multiscale ear model, and used to predict the OC's behavior under blast. Future work with this model will incorporate cochlear endolymphatic fluid, increase the number of OHC rows to 19 in total, and use the results of the model to reliably predict the sensorineural hearing loss resulting from blast exposure.
-
Winter warfare training (WWT) is a critical component of military training that trains warfighters to operate effectively in extreme environments impacted by snow and mountainous terrain. These environmental factors can exacerbate the disruption to the hormone milieu associated with operating in multi-stressor settings. To date, there is limited research on the physiological responses and adaptations that occur in elite military populations training in arduous environments. The purpose of this study was to quantify hormone responses and adaptations in operators throughout WWT. ⋯ Over the course of WWT, elite operators experienced alterations in stress, metabolic, and growth-related hormones, as well as cognitive performance. The increase in stress hormones (i.e., ACTH and cortisol) and reduction in cognitive performance following training in AK are suggestive of heightened physiological strain, despite similarities in physical workload, self-reported sleep quality, and access to nutrition. The variation in hormone levels documented between MT and AK may stem from differences in environmental factors, such as lower temperatures and harsh terrain. Further research is warranted to provide more information on the combined effects of military training in extreme environments on operator health and performance.
-
Musculoskeletal injuries (MSKIs) among active duty soldiers result in more than 10 million limited duty days each year and account for more than 70% of the medically nondeployable population. Overuse injuries in lower limbs from running, foot marching long distances with heavy loads, and lifting heavy objects are the most common types of injuries in the military. Physical training and rehabilitation exercises for greater resiliency through aerobic, muscle strength, endurance, and agility conditioning programs can prevent or reduce the effects of MSKIs if Soldiers adhere to proper biomechanics and training techniques. We are introducing a three-dimensional (3D) camera-based platform for Optical Screening and Conditioning for Injury Resilience (OSCIR) that is designed to identify and correct high-risk movement patterns based on quantifiable biomechanical measurements in clinical or field settings. Our goal is to improve resilience to MSKI by offering greater access to quality of movement skills in warfighters through an autonomous device that can be used in Sports Medicine and Reconditioning Team (SMART) clinics and High-Intensity Tactical Training (HITT) sites. ⋯ Our study describes the integration process for a 3D camera-based clinical system for MSKI conditioning and rehabilitation. The impact of our system will enable key stakeholders in the military to manage MSKIs in warfighters by automating key assessment and rehabilitation test batteries; making tests more readily accessible, and interpretations more accurate by providing objective biomechanical measures. OSCIR is undergoing turn-key design features to serve as a screening tool for warfighters to readily assess susceptibility to MSKI or as a training platform to help guide exercise techniques to achieve resiliency against future injuries.