Military medicine
-
High-rate non-penetrating blunt impacts to the thorax, such as from impacts to protective equipment, can lead to a wide range of thoracic injuries. These injuries can include rib fractures, lung contusions, and abdominal organ contusions. Ovine animals have been used to study such impacts, in a variety of ways, including in silico. To properly model these impacts in silico, it is imperative that the tissues impacted are properly characterized. The objective of this study is to characterize and validate two tissues impacted that are adjacent to the point of impact-costal cartilage and hide. Heretofore, these materials have not been characterized for use in computational models despite their nearly immediate engagement in the high-rate, non-penetrating loading environment. ⋯ Overall, we successfully characterized the mechanical behavior of the hide and costal cartilage in an ovine model. The data are intended for use in computational analogs of the ovine model for testing non-penetrating blunt impact in silico. To improve upon these models, rate sensitivity should be included, which will require additional mechanical testing.
-
Approximately 89% of all service members with amputations do not return to duty. Restoring intuitive neural control with somatosensory sensation is a key to improving the safety and efficacy of prosthetic locomotion. However, natural somatosensory feedback from lower-limb prostheses has not yet been incorporated into any commercial prostheses. ⋯ We developed a neuroprosthesis with intuitive bidirectional control and somatosensation and evoking phase-dependent locomotor reflexes, we aspire to significantly improve the prosthetic rehabilitation and long-term functional outcomes of U.S. amputees. We implanted the skin and bone integrated pylon with peripheral neural interface pylon into the cat distal tibia, electromyographic electrodes into the residual gastrocnemius muscle, and nerve cuff electrodes on the distal tibial and sciatic nerves. Results. The bidirectional neural interface that was developed was integrated into the existing passive Free-Flow Foot and Ankle prosthesis, WillowWood, Mount Sterling, OH. The Free-Flow Foot was chosen because it had the highest Index of Anthropomorphicity among lower-limb prostheses and was the first anthropomorphic prosthesis brought to market. Conclusion. The cats walked on a treadmill with no cutaneous feedback from the foot in the control condition and with their residual distal tibial nerve stimulated during the stance phase of walking.
-
Exposure to high doses of ionizing radiation can result in hematopoietic acute radiation syndrome. Currently, there is no radiation medical countermeasure approved by the U.S. FDA which can be used before radiation exposure to protect exposed individuals. Here we aimed to evaluate the therapeutic potential of an aqueous suspension of synthetic genistein nanoparticles (BIO 300) as a radioprotectant in a pilot efficacy study using a nonhuman primate model of total body irradiation. ⋯ BIO 300's mechanism of action is complex and protection against irradiation is attainable without much improvement in the complete blood count (CBC) profile. BIO 300's mechanism for radioprotection involves multiple biological pathways and systems.
-
Acute Compartment Syndrome (ACS) is a severe trauma caused by elevated intra-muscle-compartment pressure (ICP). The current standard method for diagnosis is to insert a needle into the muscle sterilely under anesthesia. However, to secure the environment is sometimes not easy and leads to delays in diagnosis. Recently, we have focused on shear wave ultrasound elastography (SWE) as an alternative, which can be done concisely in unclean environment and without anesthesia. We would like to report the usefulness of SWE for ACS diagnosis using 2-pedal walking turkey model recently developed in our lab. ⋯ SWE seems to be a substitute measure of ICP in diagnosing ACS. With regard to our in vivo ACS model using turkey, survival at 50 mmHg ICP for 6 hours and 6 weeks post ACS would be an appropriate situation.
-
Achieving simultaneous cerebral blood flow (CBF) and oxygenation measures, specifically for point-of-care injury monitoring in prolonged field care, requires the implementation of appropriate methodologies and advanced medical device design, development, and evaluation. The near-infrared spectroscopy (NIRS) method measures the absorbance of light whose attenuation is related to cerebral blood volume and oxygenation. By contrast, diffuse correlation spectroscopy (DCS) allows continuous noninvasive monitoring of microvascular blood flow by directly measuring the degree of light scattering because of red blood cell (RBC) movement in tissue capillaries. Hence, this study utilizes these two optical approaches (DCS-NIRS) to obtain a more complete hemodynamic monitoring by providing cerebral microvascular blood flow, hemoglobin oxygenation and deoxygenation in hemorrhage, and hypoxia-induced injuries. ⋯ There is a consistency in blood flow measures in both injury mechanisms (hemorrhagic shock and hypoxia), which is significant as the new prototype system provides similar measures and trends for each brain injury type, suggesting that the optical system can be used in response to different injury mechanisms. Notably, the results support the idea that this optical system can probe the hemodynamic status of local cerebral cortical tissue and provide insight into the underlying changes of cerebral tissue perfusion at the microvascular level. These measurement capabilities can improve shock identification and monitoring of medical management of injuries, particularly hemorrhagic shock, in prolonged field care.