Military medicine
-
The United States Army has shifted doctrine to focus on large-scale combat operations against peer to near-peer adversaries. Future conflicts could result in a limited supply chain, leaving medical providers with only expired blood products for treatment of hemorrhagic shock. This study evaluated quality, function, and safety metrics of whole blood stored for 1 week past regulated expiration (i.e., 35 days, in CPDA-1). ⋯ Storage of whole blood out to 42 days results in a continuous decline in function, but further in vivo safety studies should be performed to determine if the benefits of expired blood outweigh the risks. Other methods to safely extend storage of whole blood that maintain hemostatic function and preserve safety should be investigated, with emphasis placed on methods that reduce potassium leak and/or hemolysis.
-
Winter warfare training (WWT) is a critical component of military training that trains warfighters to operate effectively in extreme environments impacted by snow and mountainous terrain. These environmental factors can exacerbate the disruption to the hormone milieu associated with operating in multi-stressor settings. To date, there is limited research on the physiological responses and adaptations that occur in elite military populations training in arduous environments. The purpose of this study was to quantify hormone responses and adaptations in operators throughout WWT. ⋯ Over the course of WWT, elite operators experienced alterations in stress, metabolic, and growth-related hormones, as well as cognitive performance. The increase in stress hormones (i.e., ACTH and cortisol) and reduction in cognitive performance following training in AK are suggestive of heightened physiological strain, despite similarities in physical workload, self-reported sleep quality, and access to nutrition. The variation in hormone levels documented between MT and AK may stem from differences in environmental factors, such as lower temperatures and harsh terrain. Further research is warranted to provide more information on the combined effects of military training in extreme environments on operator health and performance.
-
Obstructive sleep apnea (OSA) is prevalent among U.S. military personnel, but adherence to positive airway pressure (PAP) treatment is suboptimal. This study sought to identify factors that predict the adherence to PAP therapy of active duty military patients newly diagnosed with OSA. ⋯ Readiness for therapy, self-efficacy, confidence in putting into action the treatment plan, and worries about sleep are modifiable variables that may be targeted in programs to boost PAP adherence and usage among the military population. Future studies should explore the predictive aspects of each of these variables and identify interventions to improve them.
-
Mass screening for SARS-CoV-2 using nasopharyngeal swabs (NPS) is costly, uncomfortable for patients, and increases the chance of virus exposure to health care workers. Therefore, this study focused on determining if self-collected unpreserved saliva can be an effective alternative to NPS collection in COVID-19 surveillance. ⋯ The saliva sample collection method identifies the E gene in SARS COVID-2 samples which provides an alternative specimen source to the NPS. This identifies the S gene and ORF1ab. Saliva collection is more convenient to the patient, yields comparable results to NPS collection, and potentially increases Covid-19 surveillance.
-
Auditory disabilities like tinnitus and hearing loss caused by exposure to blast overpressures are prevalent among military service members and veterans. The high-pressure fluctuations of blast waves induce hearing loss by injuring the tympanic membrane, ossicular chain, or sensory hair cells in the cochlea. The basilar membrane (BM) and organ of Corti (OC) behavior inside the cochlea during blast remain understudied. A computational finite element (FE) model of the full human ear was used by Bradshaw et al. (2023) to predict the motion of middle and inner ear tissues during blast exposure using a 3-chambered cochlea with Reissner's membrane and the BM. The inclusion of the OC in a blast transmission model would improve the model's anatomy and provide valuable insight into the inner ear response to blast exposure. ⋯ This microscale model is the first FE model of the OC to be connected to a macroscale model of the ear, forming a full multiscale ear model, and used to predict the OC's behavior under blast. Future work with this model will incorporate cochlear endolymphatic fluid, increase the number of OHC rows to 19 in total, and use the results of the model to reliably predict the sensorineural hearing loss resulting from blast exposure.