Military medicine
-
Military members and first responders may, at moment's notice, be asked to assist in incidents that may result in radiation exposure such as Operation Tomadachi in which the U.S. Navy provided significant relief for the Fukushima Daiichi Nuclear Reactor accident in Japan after an earthquake and tsunami in 2011. We are also currently facing potential threats from nuclear power plants in the Ukraine should a power disruption to a nuclear plant interfere with cooling or other safety measures. Exposure to high doses of radiation results in acute radiation syndrome (ARS) characterized by symptoms arising from hematopoietic, gastrointestinal, and neurovascular injuries. Although there are mitigators FDA approved to treat ARS, there are currently no FDA-approved prophylactic medical interventions to help protect persons who may need to respond to radiation emergencies. There is strong evidence that manganese (Mn) has radiation protective efficacy as a promising prophylactic countermeasure. ⋯ Initial experiments show that MnCl2 is a promising safe and effective prophylactic countermeasure against ARS. MRI data support the systemic distribution of MnCl2 which is needed in order to protect multiple tissues in the body. The pathology data in bone marrow and the brain support faster recovery from radiation exposure in the treated animals and decreased organ damage.
-
Battlefield trauma necessitates prompt hemostatic intervention to mitigate fatalities resulting from critical blood loss. Insights from Operation Enduring Freedom and Operation Iraqi Freedom emphasize the limitations of conventional methods, such as tourniquets, especially in noncompressible torso hemorrhage. Despite advancements in hemostatic agents, the evolving dynamics of multidomain operations necessitate novel, lightweight strategies for hemorrhage control. This study investigates the Silicone-Based Polymer (SBP) Universal Combat Matrix (UCM) by SiOxMed, a multimodal matrix exhibiting efficacy in lethal hemorrhage models. The study evaluates UCM's multiday hemostatic capabilities in a noncompressible torso hemorrhage model, offering pivotal insights for potential deployment in battlefield trauma. ⋯ In conclusion, our investigation into the SBP UCM hemostatic efficacy in a grade IV liver laceration model demonstrates its rapid and reliable action in controlling bleeding, showcasing practicality with an average mass of 4.0 ± 1.0 g. Silicone-Based Polymer sustained hemostasis without adverse physiological effects, as evidenced by stable parameters and the survival of all swine during and after anesthesia. Macroscopic examination at 48 hours revealed durable adherence with no indications of hemorrhage. Histological evaluations highlighted SBP's role in stable clot formation, fibrinogenesis, and tissue regeneration, indicating its potential as a multimodal wound dressing. Although promising, the study has limitations, emphasizing the need for future research with larger samples and controls. This work sets the stage for exploring SBP's clinical implications, particularly in scenarios where lightweight, multimodal technologies are crucial for addressing traumatic injuries and enhancing military medical capabilities.
-
The material of a bandage plays an important role in wound management. Microorganisms can colonize the dressing and release toxins, which create dead cells in the wound. This allows the microorganisms to bind the dead cells and infect the wound. Thus, a dressing is needed that kills bacteria in the bandage. To combat health care-associated infections, antimicrobial treatment of medical textiles, such as gauze, uniforms, curtains, bed sheets, gowns, and masks, is required. Besides, antimicrobial resistance is another major problem of this century. Antibacterial overuse has contributed to drug-resistant bacteria. To combat these two problems, we synthesized new organo-selenium compounds that can be attached to the cotton of the dressing. We then used an in vivo wound model, which allowed us to measure the effectiveness of selenium attached to a cotton dressing, to prevent bacteria from infecting a wound. ⋯ The results show that the selenium remains in the dressing after washing and is able to completely protect the wound from bacterial infection. In the selenium bandage, no bacteria were found in the bandage or the wound after 5 days.
-
Peripheral nerve injury (PNI) occurs in approximately 3% of all trauma patients and can be challenging to treat, particularly when injury is severe such as with a long-segmental gap. Although peripheral nerves can regenerate after injury, functional recovery is often insufficient, leading to deficits in the quality of life of patients with PNI. Although nerve autografts are the gold standard of care, there are several disadvantages to their use, namely a lack of autologous nerve material for repair. This has led to the pursuit of alternative treatment methods such as axon guidance channels (AGCs). Second-generation AGCs have been shown to be able to deliver growth-enhancing substrates for nerve repair directly to the injury site. Although our laboratory has had success with second-generation AGCs filled with Schwann cells (SCs), SCs have their own set of issues clinically. Because of this, we have begun to utilize SC-derived exosomes as an alternative, as they have the appropriate protein markers, associate to axons in high concentrations, and are able to improve nerve regeneration. However, it is unknown how SC-derived exosomes may react within second-generation AGCs; thus, the aim of the present study was to assess the ability of SC-derived exosomes to be loaded into a second-generation AGC and how they would distribute within it. ⋯ Although only 4 second-generation AGCs were utilized, these findings indicate a potential use for SC-derived exosomes within second-generation AGCs to treat severe PNI. Future research should focus on exploring this in greater detail and in different contexts to assess the ability of SC-derived exosomes to survive at the site of injury and treat PNI.
-
While the 44-mm clay penetration criterion was developed in the 1970s for soft body armor applications, and the researchers acknowledged the need to conduct additional tests, the same behind the armor blunt trauma displacement limit is used for both soft and hard body armor evaluations and design considerations. Because the human thoraco-abdominal contents are heterogeneous, have different skeletal coverage, and have different functional requirements, the same level of penetration limit does not imply the same level of protection. It is important to determine the regional responses of different thoraco-abdominal organs to better describe human tolerance and improve the current behind armor blunt trauma standard. The purpose of this study was to report on the methods, procedures, and data collected from swine. ⋯ The experimental design based on parallel tests with whole body human cadavers and cadaver swine was found to be successful in delivering controlled impacts to the liver region of live swine and reproducing liver injuries. Previously used biomechanical measures as potential candidates for injury criteria development were obtained. Using this proven model, tests with additional samples are needed to develop injury risk curves for liver impacts and obtain regional (liver) injury criteria.