The Journal of experimental medicine
-
Airway hypersensitive reaction (AHR) is an animal model for asthma, which is caused or enhanced by environmental factors such as allergen exposure. However, the precise mechanisms that drive AHR remain unclear. We identified a novel subset of natural killer T (NKT) cells that expresses the interleukin 17 receptor B (IL-17RB) for IL-25 (also known as IL-17E) and is essential for the induction of AHR. ⋯ IL-17RB(+) NKT cells were detected in the lung, and depletion of IL-17RB(+) NKT cells by IL-17RB-specific monoclonal antibodies or NKT cell-deficient Jalpha18(-/-) mice failed to develop IL-25-dependent AHR. Cell transfer of IL-17RB(+) but not IL-17RB(-) NKT cells into Jalpha18(-/-) mice also successfully reconstituted AHR induction. These results strongly suggest that IL-17RB(+) CD4(+) NKT cells play a crucial role in the pathogenesis of asthma.
-
Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease in which fibroblasts accumulate in the alveolar wall within a type I collagen-rich matrix. Although lung fibroblasts derived from patients with IPF display durable pathological alterations in proliferative function, the molecular mechanisms differentiating IPF fibroblasts from their normal counterparts remain unknown. Polymerized type I collagen normally inhibits fibroblast proliferation, providing a physiological mechanism to limit fibroproliferation after tissue injury. ⋯ In contrast, IPF fibroblasts eluded this restraint, displaying a pathological pattern of beta1 integrin signaling in response to polymerized collagen that leads to aberrant activation of the PI3K-Akt-S6K1 signal pathway caused by inappropriately low PTEN activity. Mice deficient in PTEN showed a prolonged fibroproliferative response after tissue injury, and immunohistochemical analysis of IPF lung tissue demonstrates activation of Akt in cells within fibrotic foci. These results provide direct evidence for defective negative regulation of the proliferative pathway in IPF fibroblasts and support the theory that the pathogenesis of IPF involves an intrinsic fibroblast defect.
-
The World Health Organization estimates that lower respiratory tract infections (excluding tuberculosis) account for approximately 35% of all deaths caused by infectious diseases. In many cases, the cause of death may be caused by multiple pathogens, e.g., the life-threatening bacterial pneumonia observed in patients infected with influenza virus. The ability to evolve more efficient immunity on each successive encounter with antigen is the hallmark of the adaptive immune response. ⋯ We now report for the first time that this phenomenon is mediated by a sustained desensitization of lung sentinel cells to Toll-like receptor (TLR) ligands; this is an effect that lasts for several months after resolution of influenza or respiratory syncytial virus infection and is associated with reduced chemokine production and NF-kappaB activation in alveolar macrophages. Although such desensitization may be beneficial in alleviating overall immunopathology, the reduced neutrophil recruitment correlates with heightened bacterial load during secondary respiratory infection. Our data therefore suggests that post-viral desensitization to TLR signals may be one possible contributor to the common secondary bacterial pneumonia associated with pandemic and seasonal influenza infection.
-
Pseudomonas aeruginosa is a Gram-negative bacterium that causes opportunistic infections in immunocompromised individuals. P. aeruginosa employs a type III secretion system to inject effector molecules into the cytoplasm of the host cell. This interaction with the host cell leads to inflammatory responses that eventually result in cell death. ⋯ Macrophages deficient in IPAF or caspase-1 were markedly resistant to P. aeruginosa-induced cell death and release of the proinflammatory cytokine interleukin (IL)-1beta. A subset of P. aeruginosa isolates express the effector molecule exoenzyme U (ExoU), which we demonstrate is capable of inhibiting caspase-1-driven proinflammatory cytokine production. This study shows a key role for IPAF and capase-1 in innate immune responses to the pathogen P. aeruginosa, and also demonstrates that virulent ExoU-expressing strains of P. aeruginosa can circumvent this innate immune response.
-
Asthma and chronic obstructive pulmonary disease (COPD) are characterized by different patterns of airway remodeling, which all include an increased mass of bronchial smooth muscle (BSM). A remaining major question concerns the mechanisms underlying such a remodeling of BSM. Because mitochondria play a major role in both cell proliferation and apoptosis, we hypothesized that mitochondrial activation in BSM could play a role in this remodeling. ⋯ Both characteristics were completely abrogated in mitochondria-deficient asthmatic BSM cells. Conversely, in both COPD and control BSM cells, induction of mitochondrial biogenesis reproduced these characteristics. Thus, BSM in asthmatic patients is characterized by an altered calcium homeostasis that increases mitochondrial biogenesis, which, in turn, enhances cell proliferation, leading to airway remodeling.