The Journal of experimental medicine
-
Biography Historical Article
Yellow fever and Max Theiler: the only Nobel Prize for a virus vaccine.
In 1951, Max Theiler of the Rockefeller Foundation received the Nobel Prize in Physiology or Medicine for his discovery of an effective vaccine against yellow fever--a discovery first reported in the JEM 70 years ago. This was the first, and so far the only, Nobel Prize given for the development of a virus vaccine. Recently released Nobel archives now reveal how the advances in the yellow fever vaccine field were evaluated more than 50 years ago, and how this led to a prize for Max Theiler.
-
Biography Historical Article
Ralph Steinman: dendritic cells bring home the Lasker.
Ralph Steinman is perhaps best known as a codiscoverer of dendritic cells (DCs) and as a founding father of the research area that these cells have spawned. For his discovery, Steinman was recently awarded the 2007 Albert Lasker Award for Basic Medical Research. Yet the man behind the research holds his praise for the many other scientists-in the U. S. and abroad-who have further advanced the therapeutic promise of DCs.
-
Human interleukin (IL) 1 receptor-associated kinase 4 (IRAK-4) deficiency is a recently discovered primary immunodeficiency that impairs Toll/IL-1R immunity, except for the Toll-like receptor (TLR) 3- and TLR4-interferon (IFN)-alpha/beta pathways. The clinical and immunological phenotype remains largely unknown. We diagnosed up to 28 patients with IRAK-4 deficiency, tested blood TLR responses for individual leukocyte subsets, and TLR responses for multiple cytokines. ⋯ No death and no invasive infection occurred in patients older than 8 and 14 yr, respectively. The IRAK-4-dependent TLRs and IL-1Rs are therefore vital for childhood immunity to pyogenic bacteria, particularly Streptococcus pneumoniae. Conversely, IRAK-4-dependent human TLRs appear to play a redundant role in protective immunity to most infections, at most limited to childhood immunity to some pyogenic bacteria.
-
Comparative Study
Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy.
The intercalated disc (ID) of cardiac myocytes is emerging as a crucial structure in the heart. Loss of ID proteins like N-cadherin causes lethal cardiac abnormalities, and mutations in ID proteins cause human cardiomyopathy. A comprehensive screen for novel mechanisms in failing hearts demonstrated that expression of the lysosomal integral membrane protein 2 (LIMP-2) is increased in cardiac hypertrophy and heart failure in both rat and human myocardium. ⋯ RNAi-mediated knockdown of LIMP-2 decreases the binding of phosphorylated beta-catenin to cadherin, whereas overexpression of LIMP-2 has the opposite effect. Collectively, our data show that LIMP-2 is crucial to mount the adaptive hypertrophic response to cardiac loading. We demonstrate a novel role for LIMP-2 as an important mediator of the ID.