The Journal of immunology : official journal of the American Association of Immunologists
-
Fetal interventions to diagnose and treat congenital anomalies are growing in popularity but often lead to preterm labor. The possible contribution of the maternal adaptive immune system to postsurgical pregnancy complications has not been explored. We recently showed that fetal intervention in mice increases maternal T cell trafficking into the fetus and hypothesized that this process also may lead to increased maternal T cell recognition of the foreign conceptus and subsequent breakdown in maternal-fetal tolerance. ⋯ We further show that maternal T cells are necessary for this phenomenon. These results suggest that fetal intervention enhances maternal T cell recognition of the fetus and that T cell activation may be a culprit in postsurgical pregnancy complications. Our results have clinical implications for understanding and preventing complications associated with fetal surgery such as preterm labor.
-
NK cells are the first lymphoid population recovering after allogeneic hematopoietic stem cell transplantation and play a crucial role in early immunity after the graft. Recently, it has been shown that human CMV (HCMV) infection/reactivation can deeply influence NK cell reconstitution after umbilical cord blood transplantation by accelerating the differentiation of mature NKG2A(-) killer Ig-like receptor (KIR)(+) NK cells characterized by the expression of the NKG2C-activating receptor. ⋯ Interestingly, this expanded mature NK cell subset expressed surface-activating KIR that could trigger NK cell cytotoxicity, degranulation, and IFN-γ release. Given the absence of NKG2C, it is conceivable that activating KIRs may play a role in the HCMV-driven NK cell maturation and that NK cells expressing activating KIRs might contribute, at least in part, to the control of infections after transplantation.
-
Airway inflammation in allergic asthma reflects a threshold response of the innate immune system, including group 2 innate lymphoid cells (ILC2), followed by an adaptive Th2 cell-mediated response. Transcription factor Gata3 is essential for differentiation of both Th2 cells and ILC2. We investigated the effects of enforced Gata3 expression in T cells and ILC2 on the susceptibility of mice to allergic airway inflammation (AAI). ⋯ Compared with WT littermates, CD2-Gata3 Tg mice contained increased numbers of ILC2, which expressed high levels of IL-33R and contributed significantly to early production of IL-4, IL-5, and IL-13. CD2-Gata3 Tg mice also had a unique population of IL-33-responsive non-B/non-T lymphoid cells expressing IFN-γ. Enforced Gata3 expression is therefore sufficient to enhance Th2 and ILC2 activity, and leads to increased susceptibility to AAI after mild exposure to inhaled harmless Ags that otherwise induce Ag tolerance.
-
At an injury site, efficient clearance of apoptotic cells by wound macrophages or efferocytosis is a prerequisite for the timely resolution of inflammation. Emerging evidence indicates that microRNA-21 (miR-21) may regulate the inflammatory response. In this work, we sought to elucidate the significance of miR-21 in the regulation of efferocytosis-mediated suppression of innate immune response, a key process implicated in resolving inflammation following injury. ⋯ In summary, this work provides direct evidence implicating miRNA in the process of turning on an anti-inflammatory phenotype in the postefferocytotic macrophage. Elevated macrophage miR-21 promotes efferocytosis and silences target genes PTEN and PDCD4, which in turn accounts for a net anti-inflammatory phenotype. Findings of this study highlight the significance of miRs in the resolution of wound inflammation.
-
Identifying relevant mediators responsible for the pathogenesis during sepsis may lead to finding novel diagnostic and therapeutic targets. Recent studies indicate programmed cell death receptor (PD)-1 plays a significant role in the development of immune suppression associated with sepsis. In this study, we determine whether B7-H1, the primary ligand of PD-1, contributes to the pathogenesis of sepsis. ⋯ In addition, we found that, during sepsis, whereas there were no marked differences affecting ex vivo macrophage cytokine productive capacity between PD-1 and B7-H1 gene-deficient mice, preservation of ex vivo macrophage phagocytic function was only seen in septic PD-1 knockout mouse cells. Finally, higher percentage B7-H1(+) neutrophils in peripheral blood correlated not only with higher levels of pro- and anti-inflammatory cytokines/chemokines (CCL2, IL-6, CXCL2, KC, TNF-α, and IL-10), but with lethal outcome as well. Together, these results indicate B7-H1 contributes to septic morbidity in fashion distinct from PD-1 and suggest B7-H1 expression on neutrophils could be used as a biomarker of septic severity.