The Journal of immunology : official journal of the American Association of Immunologists
-
Comparative Study
Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12.
Monocyte-derived dendritic cells (MDDCs) activate naive T lymphocytes to induce adaptive immunity, effecting Th1 polarization through IL-12. However, little is known about other potential DC Th1 polarizing mechanisms, or how T cell polarization may be affected by DCs differentiating in, or exposed to, a proinflammatory environment. Macrophages (MPhis) are DC precursors abundant in inflamed tissues, lymph nodes, and tumors. ⋯ Thus DCs differentiating from MPhis induce T cell IFN-gamma through beta-chemokines with little or no requirement for IL-12. Myeloid DCs arising from distinct precursor cells may have differing properties, including different mechanisms of Th1 polarization. These data are the first reports of IFN-gamma induction through chemokines by DCs.
-
Recent reports support the concept that the major defect in polymicrobial sepsis is an impaired immunologic response to infection. Oligodeoxynucleotides containing CpG sequence motifs (CpG-ODN) were previously shown to induce immune protection in models of chronic infection with intracellular bacteria, parasites, and viruses due to their ability to augment IFN-gamma-dependent Th1 responses. Here, we demonstrate that challenging mice with CpG-ODN substantially increases the resistance against acute polymicrobial sepsis. ⋯ Neutrophils of CpG-ODN-treated mice exhibited an up-regulation of phagocytic receptors, an increased phagocytic activity, and an elevated production of reactive oxygen metabolites. These results suggest that the protective effects of CpG-ODNs in acute polymicrobial sepsis are related to an enhanced effector cell response of innate immunity. CpG-ODN may therefore represent potent agents for the treatment of sepsis-associated immunoparalysis.
-
CpG oligodeoxynucleotides (ODNs) are promising immunomodulatory agents for treating human diseases and vaccine development. Phosphodiester CpG ODNs were demonstrated to have poor immunostimulatory potentials for cytokine production. However, the conjugation of consecutive deoxyriboguanosine residues, called a dG run, at the 3' terminus of phosphodiester CpG ODNs significantly enhanced TNF-alpha and IL-12 production from mouse splenic dendritic cells (DCs). ⋯ Among primary APCs, DCs were the most potent for CpG ODN-mediated IL-12 production. Furthermore, we demonstrated that the conjugation of a dG6 run into the 3' terminus of phosphodiester CpG ODNs was crucial for their ability to generate Th1 immunity in vivo. Thus, the conjugation of a dG6 run into phosphodiester CpG ODNs would be an alternative way to optimize their immunostimulatory potentials in vitro and in vivo.
-
Astrocytes are specialized cells of the CNS that are implicated in the pathogenesis of multiple sclerosis and experimental allergic encephalomyelitis. In acute and relapsing-remitting experimental allergic encephalomyelitis, the neutrophil chemoattractant CXC chemokines macrophage-inflammatory protein (MIP)-2 and KC are associated with reactive astrocytes in the parenchyma. In vitro treatment of primary astrocyte cultures with nanomolar concentrations of MIP-2 or KC markedly up-regulated expression of the monocyte/T cell chemoattractants monocyte chemoattractant protein-1, inflammatory protein-10, and RANTES by a mechanism that includes stabilization of mRNA. ⋯ The astrocyte chemokine receptor for MIP-2 has 2.5 nM affinity for ligand. Astrocytes from CXCR2-deficient mice still respond to KC and MIP-2, indicating the presence of an alternative or novel high affinity receptor for these ligands. We propose that this KC/MIP-2 chemokine cascade may contribute to the persistence of mononuclear cell infiltration in demyelinating autoimmune diseases.
-
The Ly-6 locus encodes several cell surface proteins of 10-12 kDa. Some members of this multigene family may function in cell signaling and/or cell adhesion processes. T lymphocytes overexpressing Ly-6A.2 (one member of the Ly-6 gene family) protein homotypically aggregate when cultured in vitro. ⋯ The 9AB2 mAb does not bind Ly-6A.2, but coimmunoprecipitates Ly-6A.2 molecule. Moreover, 9AB2 Ag-expressing thymocytes specifically bind to Chinese hamster ovary cells overexpressing Ly-6A.2 protein, and this binding is specifically blocked by 9AB2 and anti-Ly-6A.2 Abs. These results suggest that the 66-kDa protein recognized by 9AB2 mAb is the putative ligand for Ly-6A.2.