The Journal of immunology : official journal of the American Association of Immunologists
-
The sympathetic nervous system has been implicated in mediating stress-induced alterations in NK cell activity, particularly through stimulation of beta-adrenergic receptors. However, because catecholamines induce time-dependent alterations in the distribution of NK cells, the impact of beta-adrenergic stimulation on individual NK cell cytotoxicity is not clear, nor are its implications regarding host resistance to metastatic spread. To address these issues, we used the beta-adrenergic agonist, metaproterenol (MP), in F344 rats. ⋯ Overall, our findings suggest that independent of the transitory increase in numbers of blood NK cells, in vivo beta-adrenergic stimulation suppresses NK activity in the rat. This suppression is induced peripherally and can compromise host resistance to NK-sensitive tumors. Homologies to studies in humans and clinical relevance are discussed.
-
Mitogen-activated protein (MAP) kinase-mediated signal-transduction pathways convert extracellular stimulation into a variety of cellular functions. However, the roles of MAP kinases in neutrophils are not well understood yet. Protein phosphorylation analysis of cellular MAP kinases indicates that exposure of human neutrophils to chemotactic factor FMLP as well as granulocyte-macrophage CSF, PMA, or ionomycin rapidly induced the activation of p38 and p44/42 MAP kinases, but stimulation with inflammatory cytokine TNF-alpha triggered the activation of p38 MAP kinase only. ⋯ In addition, the FMLP-induced neutrophil chemotaxis as well as superoxide generation were suppressed markedly by inhibiting the activation of cellular p38 MAP kinase, but not p44/42 MAP kinase. Moreover, RIA indicates that the activation of cellular p38 MAP kinase was required for the neutrophil IL-8 production stimulated by granulocyte-macrophage CSF or LPS as well as TNF-alpha, but not for that induced by PMA or ionomycin. These results demonstrate that the activation of cellular p38 MAP kinase is indispensable for the TNF-alpha- or FMLP-mediated cellular functions in human neutrophils, and suggest that p38 MAP kinase may play a different role in response to distinct stimulation.
-
The Melan-A/MART-1 gene, which is expressed by normal melanocytes as well as by most fresh melanoma samples and melanoma cell lines, codes for Ags recognized by tumor-reactive CTL. HLA-A*0201-restricted Melan-A-specific CTL recognize primarily the Melan-A(27-35) (AAGIGILTV) and the Melan-A(26-35) (EAAGIGILTV) peptides. The sequences of these two peptides are not necessarily optimal as far as binding to HLA-A*0201 is concerned, since both lack one of the dominant anchor amino acid residues (leucine or methionine) at position 2. ⋯ In contrast, among the Melan-A(26-35) peptide analogues tested, the peptide ELAGIGILTV was not only able to display stable binding to HLA-A2.1 but was also recognized more efficiently than the natural peptide by two short-term cultured tumor-infiltrated lymph node cell cultures as well as by five of five tumor-reactive CTL clones. Moreover, in vitro generation of tumor-reactive CTL by stimulation of PBMC from HLA-A*0201 melanoma patients with this particular peptide analogue was much more efficient than that observed with either one of the two natural peptides. These results suggest that the Melan-A(26-35) peptide analogue ELAGIGILTV may be more immunogenic than the natural peptides in HLA-A*0201 melanoma patients and should thus be considered as a candidate for future peptide-based vaccine trials.
-
The activation of NF-kappa B consists of at least three steps: degradation of I kappa B alpha, translocation of NF-kappa B into the nucleus, ai post-translational modification of NF-kappa B (e.g., phosphorylation of p65). In the present study, we found that a novel quinone derivative E3330 selectively inhibited NF-kappa B-mediated gene expression without affecting any of these steps. E3330, when included in the culture medium, suppressed NF-kappa B DNA-binding activity in PMA-induced Jurkat cell nuclear extracts, suggesting that the inhibition by E3330 of NF-kappa B-mediated gene expression was due to its ability to suppress NF-kappa B DNA-binding activity. ⋯ Moreover, a major polypeptide with a molecular mass of 40 kDa was found to be in the highly purified fraction containing the NF-kappa B-enhancing activity and predominantly bind E3330. Taken together, these results suggest that the NF-kappa B activity, after dissociation from I kappa B, is enhanced by a nuclear factor that is active irrespective of PMA treatment, and the nuclear factor-mediated enhancement is selectively inhibited by E3330. Thus, we conclude that E3330 may belong to a novel class of anti-NF-kappa B drugs.
-
TGF-beta 1 induces the cyclin-dependent kinase inhibitor p27Kip1 mRNA and protein in murine B cells.
TGF-beta1 inhibits the cell cycle progression of many types of cells by arresting them in the G1 phase. This cell cycle arrest has been attributed to the regulatory effects of TGF-beta1 on both the levels and the activities of the G1 cyclins and their kinase partners. The activities of these kinases are negatively regulated by a number of proteins, such as p15INK4b, p21WAF1/Cip1, and p27Kip1, that physically associate with cyclins, cyclin-dependent kinases (Cdk), or cyclin-Cdk complexes. ⋯ In contrast to epithelial cells, however, TGF-beta1 had little or no effect on the Cdk4 and p21WAF1/Cip1 protein levels in these B cells. Finally, although several studies suggested a direct role of p53 in TGF-beta1-mediated cell cycle arrest in epithelial cells, TGF-beta1 inhibited cell cycle progression in CH31 even in the absence of wild-type p53. Taken together, these results suggest that TGF-beta1 induces G1 arrest in B cells primarily through a p53-independent up-regulation of p27Kip1 protein.