The Journal of immunology : official journal of the American Association of Immunologists
-
Septic syndrome is the leading cause of mortality for critically ill patients worldwide. Patients develop lymphocyte dysfunctions associated with increased risk of death and nosocomial infections. In this study, we performed preclinical experiments testing the potential of recombinant human IL-7 (rhIL-7) as a lymphostimulating therapy in sepsis. ⋯ Most importantly ex vivo treatment of patients' cells with rhIL-7 significantly improves lymphocyte functionality (CD4(+) and CD8(+) lymphocyte proliferations, IFN-γ production, STAT5 phosphorylation, and B cell lymphoma 2 induction after stimulation). To our knowledge, this constitutes the first report of rhIL-7 ability to restore normal lymphocyte functions in septic patients. These results support the rational for initiating a clinical trial testing rhIL-7 in septic shock.
-
Comparative Study
Sepsis chronically in MARS: systemic cytokine responses are always mixed regardless of the outcome, magnitude, or phase of sepsis.
The paradigm of systemic inflammatory response syndrome-to-compensatory anti-inflammatory response syndrome transition implies that hyperinflammation triggers acute sepsis mortality, whereas hypoinflammation (release of anti-inflammatory cytokines) in late sepsis induces chronic deaths. However, the exact humoral inflammatory mechanisms attributable to sepsis outcomes remain elusive. In the first part of this study, we characterized the systemic dynamics of the chronic inflammation in dying (DIE) and surviving (SUR) mice suffering from cecal ligation and puncture sepsis (days 6-28). ⋯ CCS showed the inflammatory response in chronic DIE was 5-fold lower than acute DIE mice, but identical to acute SUR. The systemic mixed anti-inflammatory response syndrome-like pattern (concurrent release of proinflammatory and anti-inflammatory cytokines) occurs irrespective of the sepsis phase, response magnitude, and/or outcome. Although different in magnitude, neither acute nor chronic septic mortality is associated with a predominating proinflammatory and/or anti-inflammatory signature in the blood.
-
The complement system contributes to various immune and inflammatory diseases, including cancer. In this study, we investigated the capacity of lung cancer cells to activate complement and characterized the consequences of complement activation on tumor progression. We focused our study on the production and role of the anaphylatoxin C5a, a potent immune mediator generated after complement activation. ⋯ C5a also contributed to the immunosuppressive microenvironment required for tumor growth. In particular, blockade of C5a receptor significantly reduced myeloid-derived suppressor cells and immunomodulators ARG1, CTLA-4, IL-6, IL-10, LAG3, and PDL1 (B7H1). In conclusion, lung cancer cells have the capacity to generate C5a, a molecule that creates a favorable tumor microenvironment for lung cancer progression.
-
3-Methyladenine (3-MA) is one of the most commonly used inhibitors in autophagy research today. However, rather than inhibiting class III PI3K that is involved in autophagy suppression, 3-MA might also interfere with class I PI3K and consequently augment autophagy flux. In this study, we aim to get a thorough understanding on the action mechanisms of 3-MA in TLR4-mediated inflammatory responses in RAW264.7 macrophages and, moreover, to decipher the action of 3-MA in modulation of autophagy. ⋯ As glycogen synthase kinase 3β (GSK3β) is an important Akt substrate, we further explored its involvement in the actions of 3-MA. 3-MA was found to enhance LPS-induced NF-κB activation, iNOS, and pro-IL-1β expression, and these actions were reversed by either GSK3β inhibitors or small interfering GSK3β. Lastly, we demonstrated that 3-MA acts as an autophagy inducer in RAW264.7 macrophages, but the stimulating effects on NF-κB activation and iNOS and cyclooxygenase-2 expression were not affected in LPS-stimulated macrophages with small interfering autophagy protein-5 treatment. These results not only shed new light on the action mechanisms of 3-MA to differentially regulate inflammatory outcomes derived from TLR4-mediated MyD88 and Toll/IL-1R domain-containing adapter inducing IFN-β pathways, but also highlight the necessity to check autophagy status upon taking 3-MA as a general autophagy inhibitor.
-
Comparative Study
The TRPM4 channel controls monocyte and macrophage, but not neutrophil, function for survival in sepsis.
A favorable outcome following acute bacterial infection depends on the ability of phagocytic cells to be recruited and properly activated within injured tissues. Calcium (Ca(2+)) is a ubiquitous second messenger implicated in the functions of many cells, but the mechanisms involved in the regulation of Ca(2+) mobilization in hematopoietic cells are largely unknown. The monovalent cation channel transient receptor potential melastatin (TRPM) 4 is involved in the control of Ca(2+) signaling in some hematopoietic cell types, but the role of this channel in phagocytes and its relevance in the control of inflammation remain unexplored. ⋯ Impaired Ca(2+) mobilization in Trpm4(-/-) macrophages downregulated the AKT signaling pathway and the subsequent phagocytic activity, resulting in bacterial overgrowth and translocation to the bloodstream. In contrast, no alteration in the distribution, function, or Ca(2+) mobilization of Trpm4(-/-) neutrophils was observed, indicating that the mechanism controlling Ca(2+) signaling differs among phagocytes. Our results thus show that the tight control of Ca(2+) influx by the TRPM4 channel is critical for the proper functioning of monocytes/macrophages and the efficiency of the subsequent response to infection.