The Journal of immunology : official journal of the American Association of Immunologists
-
Despite advances in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely owing to extrarenal organ dysfunction. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that facilitate organ crosstalk and induce caspase-dependent lung apoptosis and injury through a TNFR1-dependent pathway. Given that T lymphocytes mediate local IRI in the kidney and are known to drive TNFR1-mediated apoptosis, we hypothesized that T lymphocytes activated during kidney IRI would traffic to the lung and mediate pulmonary apoptosis during AKI. ⋯ Kidney IRI induced pulmonary apoptosis measured by caspase-3 activation in wild-type controls, but not in T cell-deficient (T(nu/nu)) mice. Adoptive transfer of murine wild-type T lymphocytes into T(nu/nu) mice restored the injury phenotype with increased cellular apoptosis and lung microvascular barrier dysfunction, suggesting that ischemic AKI-induced pulmonary apoptosis is T cell dependent. Kidney-lung crosstalk during AKI represents a complex biological process, and although T lymphocytes appear to serve a prominent role in the interorgan effects of AKI, further experiments are necessary to elucidate the specific role of activated T cells in modulating pulmonary apoptosis.
-
The TLRs are important components of the respiratory epithelium host innate defense, enabling the airway surface to recognize and respond to a variety of insults in inhaled air. On the basis of the knowledge that smokers are more susceptible to pulmonary infection and that the airway epithelium of smokers with chronic obstructive pulmonary disease (COPD) is characterized by bacterial colonization and acute exacerbation of airway infections, we assessed whether smoking alters expression of TLRs in human small airway epithelium, the primary site of smoking-induced disease. Microarrays were used to survey the TLR family gene expression in small airway (10th to 12th order) epithelium from healthy nonsmokers (n = 60), healthy smokers (n = 73), and smokers with COPD (n = 36). ⋯ Bronchial biopsy immunofluorescence studies showed that TLR5 was expressed mainly on the apical side of the epithelium and was decreased in healthy smokers and smokers with COPD. In vitro, the level of TLR5 downstream genes, IL-6 and IL-8, was highly induced by flagellin in TLR5 high-expressing cells compared with TLR5 low-expressing cells. In the context that TLR5 functions to recognize pathogens and activate innate immune responses, the smoking-induced downregulation of TLR5 may contribute to smoking-related susceptibility to airway infection, at least for flagellated bacteria.
-
An effective immune response against influenza A infection depends on the generation of virus-specific T cells. NK cells are one of the first-line defenses against influenza A infection. We set out to delineate the role of NK cells in T cell immunity using a murine model of influenza A infection with A/PR/8/34. ⋯ In addition, NK cell depletion reduced the uptake and transport of influenza A virus by DCs, and significantly impaired the virus-specific T cell response. Both IFN-γ-/- and perforin-/- mice showed reduced viral Ag transport by DCs, suggesting that the ability of NK cells to influence virus transport depends on IFN-γ and perforin. In summary, our data suggest that NK cells play a critical role in the initiation and shaping of the T cell response after influenza A infection.
-
Tuberculosis, one of the leading causes of death worldwide, stimulates inflammatory responses with beneficial and pathologic consequences. The regulation and nature of an optimal inflammatory response to Mycobacterium tuberculosis remains poorly understood in humans. Insight into mechanisms of negative regulation of the TLR-mediated innate immune response to M. tuberculosis could provide significant breakthroughs in the design of new vaccines and drugs. ⋯ These data demonstrate that TOLLIP has an anti-inflammatory effect on TLR signaling in humans and that TOLLIP deficiency is associated with an increased risk of tuberculosis. To our knowledge, these data also show the first associations of TOLLIP polymorphisms with any infectious disease. These data also implicate an unexpected mechanism of negative regulation of TLR signaling in human tuberculosis pathogenesis.
-
Toll-like receptor 7 (TLR7) signals to B cells are critically involved in the innate immune response to microbes, as well as pathogenesis of autoimmune diseases, but the molecular mechanisms that normally regulate these responses are incompletely understood. We previously reported that repeated stimulation through TLR7 induces a state of hyporesponsiveness (TLR tolerance) in both human and mouse B cells, characterized by marked inhibition of particular signaling pathways. BCR signals prevent and overcome TLR7 tolerance. ⋯ Both BCR and IFNAR signals restored the phosphorylation of the transcriptional regulator c-Jun, but only BCR signals blocked the tolerance-mediated inhibition of JNK. Both BCR and IFNAR-mediated regulation was dependent on activation of the PI3K/Akt/mammalian target of rapamycin signaling pathway, indicating a central role for this axis in integrating TLR7, BCR, and IFNAR signals in B cells. These new findings reveal distinct and overlapping signaling mechanisms used by BCR and IFNAR in the regulation of TLR7 tolerance and activation.