The Journal of immunology : official journal of the American Association of Immunologists
-
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. ⋯ PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization.
-
Case Reports Comparative Study
The IL1RN promoter rs4251961 correlates with IL-1 receptor antagonist concentrations in human infection and is differentially regulated by GATA-1.
IL-1R antagonist (IL-1Ra) is required for adequate host defense in invasive pneumococcal disease (IPD). The minor allele of an IL1RN gene (C/T) promoter polymorphism (rs4251961) has been shown to be associated with decreased IL-1Ra production in healthy adults. We genotyped 299 children with IPD, and examined 19 IL1RN haplotype-tagging single-nucleotide polymorphisms. ⋯ These findings were validated in a cohort of 276 treatment-naive HIV-infected adults, with borderline significance (p = 0.058). Functional analyses demonstrated that the activity of the promoter constructs containing the T allele increased ~6-fold as compared with basal activity, and that containing the C allele by ~9-fold (p < 0.001) in the presence of GATA-1. Our findings suggest that the IL-1Ra single-nucleotide polymorphism rs4251961 plays a key role in the pathophysiology of IPD and in other human infections.
-
Comparative Study
Chemokine transcripts as targets of the RNA-binding protein HuR in human airway epithelium.
HuR is a regulator of mRNA turnover or translation of inflammatory genes through binding to adenylate-uridylate-rich elements and related motifs present in the 3'untranslated region (UTR) of mRNAs. We postulate that HuR critically regulates the epithelial response by associating with multiple ARE-bearing, functionally related inflammatory transcripts. We aimed to identify HuR targets in the human airway epithelial cell line BEAS-2B challenged with TNF-α plus IFN-γ, a strong stimulus for inflammatory epithelial responses. ⋯ Conversely, CXCL1 mRNA remained mostly nuclear and unaffected, as CXCL2, by changes in HuR levels. Increase in cytoplasmic HuR and HuR target expression partially relied on the inhibition of AMP-dependent kinase, a negative regulator of HuR nucleocytoplasmic shuttling. HuR-mediated regulation in airway epithelium appears broader than previously appreciated, coordinating numerous inflammatory genes through multiple posttranscriptional mechanisms.
-
Comparative Study
A single nucleotide polymorphism in NF-κB inducing kinase is associated with mortality in septic shock.
We tested the hypothesis that single nucleotide polymorphisms (SNPs) within genes of the NF-κB pathway are associated with altered clinical outcome of septic shock patients. We genotyped 59 SNPs in the NF-κB pathway in a discovery cohort of septic shock patients (St. Paul's Hospital [SPH], N = 589), which identified the C allele of rs7222094 T/C within MAP3K14 (NF-κB inducing kinase; NIK) associated with increased 28-d mortality (uncorrected p = 0.00024, Bonferroni corrected p = 0.014). ⋯ In lymphoblastoid cell lines, we found the rs7222094 genotype most strongly associated with mRNA expression of CXCL10, a chemokine regulated by NF-κB. Accordingly, we measured CXCL10 protein levels and found that the CC genotype of rs7222094 was associated with significantly lower levels than those of the TT genotype in lymphoblastoid cell lines (p < 0.05) and in septic shock patients (p = 0.017). This suggests that the CC genotype of NIK rs7222094 is associated with increased mortality and organ dysfunction in septic shock patients, perhaps due to altered regulation of NF-κB pathway genes, including CXCL10.