The Journal of immunology : official journal of the American Association of Immunologists
-
Pulmonary inflammation, abnormalities in alveolar type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS). We used the naturally occurring "pearl" HPS2 mouse model to investigate the mechanisms of lung inflammation observed in HPS. Although baseline bronchoalveolar lavage (BAL) cell counts and differentials were similar in pearl and strain-matched wild-type (WT) mice, elevated levels of proinflammatory (MIP1gamma) and counterregulatory (IL-12p40, soluble TNFr1/2) factors, but not TNF-alpha, were detected in BAL from pearl mice. ⋯ Exposure of WT AMs to heat- and protease-labile components of pearl BAL, but not WT BAL, resulted in robust TNF-alpha secretion. Similar abnormalities were identified in AMs and BAL from another HPS model, pale ear HPS1 mice. We conclude that the lungs of HPS mice exhibit hyperresponsiveness to LPS and constitutive and organ-specific macrophage activation.
-
Preprotachykinin-A (PPT-A) gene products substance P and neurokinin-A have been shown to play an important role in neurogenic inflammation. To investigate the role of PPT-A gene products in lung injury in sepsis, polymicrobial sepsis was induced by cecal ligation and puncture in PPT-A gene-deficient mice (PPT-A(-/-)) and the wild-type control mice (PPT-A(+/+)). ⋯ PPT-A(-/-) mice also had significantly attenuated inflammation and damage in the lungs. The data suggest that deletion of the PPT-A gene may have contributed to the disruption in recruitment of inflammatory cells resulting in protection against tissue damage, as in these mice the sepsis-associated increase in chemokine levels is significantly attenuated.
-
T cell dysfunction that occurs after surgery or trauma is associated with a poor clinical outcome. We describe that myeloid suppressor cells expressing CD11b(+)/Gr-1(+) markers invade the spleen after traumatic stress and suppress T cell function through the production of arginase 1. We created a consistent model of traumatic stress in C57BL/6 mice to perform this work. ⋯ Poor Ag-presenting capacity of control and trauma-induced CD11b(+)/Gr-1(+) cells was detected in allogeneic murine leukocyte reaction. This study demonstrates that CD11b(+)/Gr-1(+) cells invade the spleen following traumatic stress and cause T cell dysfunction by an arginase-mediated mechanism, probably that of arginine depletion. Understanding the mechanism of immune suppression by these cells has important clinical implications in the treatment of immune dysfunction after trauma or surgery.
-
Mucosal-associated invariant T (MAIT) cells reside primarily in the gut lamina propria and require commensal flora for selection/expansion. They are restricted by the highly conserved MHC class I-related molecule MR1 and, like most NK T cells, express an invariant TCRalpha chain. Although they probably contribute to gut immunity, MAIT cells have not been functionally characterized because they are so rare. ⋯ Furthermore, a relatively high proportion of transgenic MAIT cells express NK1.1, and most have a cell surface phenotype similar to that of Valpha14i NK T cells. Finally, MR1-restricted Valpha19i T cells secrete IFN-gamma, IL-4, IL-5, and IL-10 following TCR ligation, and we provide evidence for what may be two functionally distinct MAIT cell populations. These data strongly support the idea that MAIT cells contribute to the innate immune response in the gut mucosa.
-
For cardiac transplantation in infants, T cells are depleted and the thymus is removed. These manipulations should cause profound defects in the T cell compartment. To test this concept, 20 subjects who underwent cardiac transplantation in infancy and healthy age-matched subjects were studied. ⋯ T cell function, deduced from levels of human herpesvirus 7 and response to hepatitis B immunization, were notably impaired. Yet cardiac transplant recipients were generally free of opportunistic infections. Our findings demonstrate a novel approach to measuring lymphocyte diversity and suggest that understanding how these subjects resist infection could yield important insights into immune fitness.