The Journal of immunology : official journal of the American Association of Immunologists
-
Respiratory syncytial virus-induced bronchiolitis has been linked to the development of allergy and atopic asthma. IL-12 and possibly IL-18 are central mediators orchestrating Th1 and/or Th2 immune responses to infection. To determine a possible role for IL-12 in regulating the immune response to acute respiratory syncytial virus infection, IL-12p40 gene-targeted (IL-12p40-/-) and wild-type mice were intratracheally infected with respiratory syncytial virus, and lung inflammatory and immune responses were assessed. ⋯ Interestingly, IL-18, another mediator of IFN-gamma production, was significantly increased in the lungs of IL-12p40-/- mice early during the course of infection. Abrogation of IL-18-mediated signaling in IL-12p40-/- mice further enhanced Th2 immune response and mucus production in the airways during respiratory syncytial virus infection but failed to modulate IFN-gamma production or viral clearance. These findings implicate a role for IL-12 and IL-18 in modulating respiratory syncytial virus-induced airway inflammation distinct from that of viral clearance.
-
The embryo expresses paternal Ags foreign to the mother and therefore has been viewed as an allograft. It has been shown that anergic T cells generated by blocking of the CD28/B7 costimulatory pathway with anti B7-1 and anti B7-2 mAbs can be transferred as suppresser cells to prevent allograft rejection. Little is known, however, about the in vivo function of anti-B7-treated T cells after their transfer into abortion-prone mice in the maintenance of materno-fetal tolerance. ⋯ The transferred CFSE-labeled T cells were found to reside in the spleen and uterine draining lymph nodes, and a few were localized to the materno-fetal interface of the maternal recipient. Our findings suggest that the anti-B7-treated T cells not only function as potent suppresser cells, but also exert an immunoregulatory effect on the maternal recipient T cells, which cosuppresses maternal rejection to the fetus. This procedure might be considered potentially useful for fetal survival when used as an immunotherapy for human recurrent spontaneous abortion.
-
Signaling pathways from TLRs are mediated by the Toll/IL-1R (TIR) domain-containing adaptor molecules. TNF receptor-associated factor (TRAF) 6 is thought to activate NF-kappaB and MAPKs downstream of these TIR domain-containing proteins to induce production of inflammatory cytokines. ⋯ In the absence of TRAF6, 1) ligands for TLR2, TLR5, TLR7, and TLR9 failed to induce activation of NF-kappaB and MAPKs or production of inflammatory cytokines; 2) TLR4 ligand-induced cytokine production was remarkably reduced and activation of NF-kappaB and MAPKs was observed, albeit with delayed kinetics; and 3) in contrast with previously reported findings, TLR3 signaling was not affected. These results indicate that TRAF6 is essential for MyD88-dependent signaling but is not required for TIR domain-containing adaptor-inducing IFN-beta (TRIF)-dependent signaling.
-
There is evidence that C5a and macrophage migration inhibitory factor (MIF) both play important roles in experimental sepsis. Humans with sepsis also show elevated levels of both mediators in the blood. Regulation of MIF during sepsis is poorly understood. ⋯ C5a-induced release in vitro of MIF from neutrophils appeared to be due to up-regulation of MIF in cytoplasmic granules of neutrophils via activation of the protein kinase B signaling pathway together with involvement of PI3K. Our data suggest that C5a plays a role in enhancing MIF release from neutrophils in vitro and during sepsis. These findings represent a previously unrecognized function of C5a and neutrophils in the appearance of MIF in sepsis.
-
Monokine induced by IFN-gamma (MIG; CXC chemokine ligand (CXCL)9) is important in T lymphocyte recruitment in organ transplantation. However, it is not known whether this chemokine, in addition to its chemotactic properties, exerts any effect on T lymphocyte effector functions. For in vivo studies, we used a previously characterized murine model of chronic rejection. ⋯ In vitro experiments demonstrated that 1) exogenous MIG/CXCL9 stimulated CD4 lymphocyte proliferation in a MHC class II-mismatched MLR, 2) MIG/CXCL9 also increased the number of IFN-gamma-producing CD4 lymphocytes in ELISPOT, 3) neutralization of MIG/CXCL9 in MLR reduced T lymphocyte proliferation, 4) IFN-gamma-inducible protein 10/CXCL10 and IFN-inducible T cell alpha chemoattractant/CXCL11 had similar effects on T lymphocyte proliferation, 5) MIG/CXCL9 stimulated T lymphocyte proliferation in MHC class I- and total MHC-mismatched MLRs, 6) neutralization of CXCR3 reduced MIG/CXCL9-induced T lymphocyte proliferation and the number of IFN-gamma-positive spots on ELISPOT, and 7) the proliferative effects of MIG/CXCL9 were mediated via an IL-2-independent pathway and were controlled by IFN-gamma. This study demonstrates that MIG/CXCL9 stimulates T lymphocyte proliferation and effector cytokine production, in addition to its chemotactic effects. This novel observation expands our current understanding of MIG/CXCL9 biology beyond that of mediating T cell trafficking.