The Journal of biological chemistry
-
When added for a short period (2-4 h) to cells, the kinase inhibitor staurosporine (STS), can trigger double strand breaks, the formation of nuclear foci containing phosphorylated H2AX, Chk2, and p53, a decrease in transcription, and a minor degree of peripheral chromatin condensation. This "preapoptotic chromatin condensation" (PACC) occurs before mitochondrial membrane permeabilization (MMP) and caspase activation become detectable and is not inhibited by Z-VAD-fmk or Bcl-2. PACC is followed by classical apoptosis, when cells are cultured overnight, even when STS is removed from the system. ⋯ PACC could also be induced by a gross perturbation of RNA synthesis or primary DNA damage. Again, inhibition of MMP (but not that of caspases) reversed PACC induced by these stimuli. In synthesis, our data reveal the unexpected capacity of STS to induce DNA lesions and suggest qualitative differences in the cytoprotective and DNA repair-inducing potential of different apoptosis inhibitors.
-
Cell adhesion molecules regulate a variety of endothelial cell functions such as migration, response to inflammation, and angiogenesis. Recently, activated leukocyte cell adhesion molecule (ALCAM), a member of the Ig superfamily, has been detected in the primitive subsets of hematopoietic cells and endothelial cells during embryogenesis. ALCAM supports the development of hematopoietic cells as well as enhancing capillary tube formation in vitro. ⋯ Furthermore, sALCAM enhanced migration of mock-transfected endothelial-like yolk sac cells that do not express ALCAM, indicating that sALCAM has an independent effect on cell migration in addition to modulating ALCAM function. In addition, sALCAM significantly enhanced migration of HMVEC, whereas it inhibited tube formation of HMVEC on Matrigel. sALCAM demonstrated an ability to bind ALCAM and partially inhibited ALCAM-ALCAM homophilic interactions. Taken together, these data characterize a novel soluble isoform of ALCAM that may have ALCAM-dependent and ALCAM-independent functions, providing further insights regarding the role of this adhesion molecule in the regulation of endothelial cell function.
-
Camptothecins constitute a novel class of chemotherapeutics that selectively target DNA topoisomerase I (Top1) by reversibly stabilizing a covalent enzyme-DNA intermediate. This cytotoxic mechanism contrasts with that of platinum drugs, such as cisplatin, which induce inter- and intrastrand DNA adducts. In vitro combination studies using platinum drugs combined with Top1 poisons, such as topotecan, showed a schedule-dependent synergistic activity, with promising results in the clinic. ⋯ This contrasts with a lack of persistent lesions induced by the alkylating agent bis[chloroethyl]nitrosourea, which exhibits only additive activity with topotecan in a range of cell lines. In human IGROV-1 ovarian cancer cells, the synergistic activity of cisplatin with topotecan requires processive DNA polymerization, whereas overexpression of Top1 enhances yeast cell sensitivity to cisplatin. These results indicate that the cytotoxic activity of cisplatin is due, in part, to poisoning of Top1, which is exacerbated in the presence of topotecan.
-
Matrix GLA protein (MGP) is expressed in endothelial cells (EC), and MGP deficiency results in developmental defects suggesting involvement in EC function. To determine the role of MGP in EC, we cultured bovine aortic EC with increasing concentrations of human MGP (hMGP) for 24 h. The results showed increased proliferation, migration, tube formation, and increased release of vascular endothelial growth factor-A (VEGF-A) and basic fibroblast growth factor (bFGF). ⋯ It occurred without changes in expression of TGF-beta1 or ALK1 and was mimicked by transfection of constitutively active ALK1, which increased VEGF expression. Expression of VEGF and MGP was induced by TGF-beta1, but the induction of MGP preceded that of VEGF, consistent with a promoting effect on VEGF expression. Together, the results suggest that MGP plays a role in EC function, altering the response to TGF-beta superfamily growth factors.
-
The ATP-sensitive potassium (K(ATP)) channel in pancreatic islet beta cells consists of four pore-forming (Kir6.2) subunits and four regulatory sulfonylurea receptor (SUR1) subunits. In beta cells, the K(ATP) channel links intracellular metabolism to the dynamic regulation of the cell membrane potential that triggers insulin secretion. Syntaxin 1A (Syn-1A) is a SNARE protein that not only plays a direct role in exocytosis, but also binds and modulates voltage-gated K(+) and Ca(2+) channels to fine tune exocytosis. ⋯ This prompted us to examine the specific domains within Syn-1A that would mediate its action on the K(ATP) channels. The C-terminal H3 domain of Syn-1A (Syn-1A-H3), but not the N-terminal H(ABC) domain (Syn-1A-H(ABC)), binds the SUR1 protein of BA8 cells, causing an inhibition of K(ATP) currents, and this inhibition was mediated via both NBF-1 and NBF-2. It therefore appears that the H3 domain of Syn-1A is the putative domain, which binds SUR1, but its distinct actions on the NBFs may depend on the conformation of Syn-1A occurring during exocytosis.