The Journal of biological chemistry
-
Caveolin-1 (Cav-1) is the principal structural component of caveolae membrane domains in non-muscle cells, including mammary epithelia. There is now clear evidence that caveolin-1 influences the development of human cancers. For example, a dominant-negative mutation (P132L) in the Cav-1 gene has been detected in up to 16% of human breast cancer samples. ⋯ Interestingly, delivery of a cell permeable peptide encoding the caveolin-1 scaffolding domain (residues 82-101) into Met-1 cells was sufficient to inhibit invasion. Coincident with this decreased invasive index, Met-1/Cav-1 cells exhibited marked reductions in MMP-9 and MMP-2 secretion and associated gelatinolytic activity, as well as diminished ERK-1/2 signaling in response to growth factor stimulation. These results demonstrate, for the first time, that caveolin-1 is a potent suppressor of mammary tumor growth and metastasis using novel in vivo animal model approaches.
-
Signaling by bone morphogenetic proteins (BMPs) plays a central role in early embryonic patterning, organogenesis, and homeostasis in a broad range of species. Chordin, an extracellular antagonist of BMP signaling, is thought to readily diffuse in tissues, thus forming gradients of BMP inhibition that result in reciprocal gradients of BMP signaling. The latter determine cell fates along the embryonic dorsoventral axis. ⋯ Surprisingly, mammalian TSG did not bind heparin unless prebound to Chordin and/or BMP-4, although Drosophila TSG has been reported to bind heparin on its own. Results are also presented that indicate that Chordin-HSPG interactions strongly potentiate the antagonism of BMP signaling by Chordin and are necessary for the retention and uptake of Chordin by cells. These data and others regarding Chordin diffusion have implications for the paradigm of how Chordin is thought to regulate BMP signaling in the extracellular space and how gradients of BMP signaling are formed.