The Journal of biological chemistry
-
Vanilloid receptor 1 belongs to the transient receptor potential ion channel family and transduces sensations of noxious heat and inflammatory hyperalgesia in nociceptive neurons. These neurons contain two vanilloid receptor pools, one in the plasma membrane and the other in the endoplasmic reticulum. The present experiments characterize these two pools and their functional significance using calcium imaging and 45Ca uptake in stably transfected cells or dorsal root ganglion neurons. ⋯ Direct depletion of calcium via activation of endoplasmic reticulum-localized vanilloid receptor 1 triggered store operated calcium entry. Furthermore, we found that, in the presence of low extracellular calcium (10(-5) m), either 2 microm capsaicin or 0.1 nm-1.6 microm resiniferatoxin caused a pronounced calcium-induced calcium release in either vanilloid receptor-expressing neurons or heterologous expression systems. This phenomenon may allow new insight into how nociceptive neuron function in response to a variety of nociceptive stimuli both acutely and during prolonged nociceptive signaling.
-
The clinically common mutant opsin P23H, associated with autosomal dominant retinitis pigmentosa, yields low levels of rhodopsin when retinal is added following induction of the protein in stably transfected HEK-293 cells. We previously showed that P23H rhodopsin levels could be increased by providing a 7-membered ring, locked analog of 11-cis-retinal during expression of P23H opsin in vivo. Here we demonstrate that the mutant opsin is effectively rescued by 9- or 11-cis-retinal, the native chromophore. ⋯ Significantly, P23H rhodopsins were more thermally unstable than the wild-type proteins and more rapidly bleached by hydroxylamine in the dark. We suggest that P23H opsin is similarly unstable and that retinal binds and stabilizes the protein early in its biogenesis to promote its cellular folding and trafficking. The implications of this study for treating retinitis pigmentosa and other protein conformational disorders are discussed.
-
Because of the critical role of the nuclear transcription factor NF-kappaB in inflammation, viral replication, carcinogenesis, antiapoptosis, invasion, and metastasis, specific inhibitors of this nuclear factor are being sought and tested as treatments. NF-kappaB activation is known to require p65 phosphorylation at serine residues 276, 529, and 536 before it undergoes nuclear translocation. Small protein domains, termed protein transduction domains (PTDs), which are able to penetrate cell membranes can be used to transport other proteins across the cell membrane. ⋯ NF-kappaB-regulated reporter gene expression induced by TNF, TNF receptor 1, TNF receptor-associated death domain, TNF receptor-associated factor-2, NF-kappaB-inducing kinase, IkappaBalpha kinase, and p65 was also suppressed by these peptides. Suppression of NF-kappaB by PTD-p65-P1 enhanced the apoptosis induced by TNF and chemotherapeutic agents. Overall, our results demonstrate the identification of a p65 peptide that can selectively inhibit NF-kappaB activation induced by various inflammatory stimuli, down-regulate NF-kappaB-mediated gene expression, and up-regulate apoptosis.
-
In the present study, we tested the hypothesis that 17beta-estradiol (betaE2) is a neuroprotectant in the retina, using two experimental approaches: 1) hydrogen peroxide (H(2)O(2))-induced retinal neuron degeneration in vitro, and 2) light-induced photoreceptor degeneration in vivo. We demonstrated that both betaE2 and 17alpha-estradiol (alphaE2) significantly protected against H(2)O(2)-induced retinal neuron degeneration; however, progesterone had no effect. betaE2 transiently increased the phosphoinositide 3-kinase (PI3K) activity, when phosphoinositide 4,5-bisphosphate and [(32)gammaATP] were used as substrate. Phospho-Akt levels were also transiently increased by betaE2 treatment. ⋯ Systemic administration of betaE2 significantly protected the structure and function of rat retinas against light-induced photoreceptor cell degeneration and inhibited photoreceptor apoptosis. In addition, systemic administration of betaE2 activated retinal IRbeta, but not the insulin-like growth factor receptor-1, and produced a transient increase in PI3K activity and phosphorylation of Akt in rat retinas. The results show that estrogen has retinal neuroprotective properties in vivo and in vitro and suggest that the insulin receptor/PI3K/Akt signaling pathway is involved in estrogen-mediated retinal neuroprotection.
-
Toll-like receptors (TLRs) are the basic signaling receptors of the innate immune system. They are activated by molecules associated with pathogens or injured host cells and tissue. TLR3 has been shown to respond to double stranded (ds) RNA, a replication intermediary for many viruses. ⋯ Endogenous RNA released from or associated with necrotic cells also stimulated DCs, leading to interferon-alpha secretion, which could be abolished by pretreatment of necrotic cells with RNase. These results demonstrate that RNA, likely through secondary structure, is a potent host-derived activator of TLR3. This finding has potential physiologic relevance because RNA escaping from damaged tissue or contained within endocytosed cells could serve as an endogenous ligand for TLR3 that induces or otherwise modulates immune responses.