The Journal of biological chemistry
-
Cystic fibrosis (CF) is caused by defective cyclic AMP-dependent cystic fibrosis transmembrane conductance regulator Cl(-) channels. Thus, CF epithelia fail to transport Cl(-) and water. A postulated therapeutic avenue in CF is activation of alternative Ca(2+)-dependent Cl(-) channels. ⋯ More importantly, in both CF mouse models, Cl(-) permeability of nasal epithelia was restored in a sustained manner by zinc and ATP. These effects were reversible and reacquirable upon removal and readdition of agonists. Our data suggest that activation of P2X calcium entry channels may have profound therapeutic benefit for CF that is independent of cystic fibrosis transmembrane conductance regulator genotype.
-
Heme oxygenase-1 (HO-1) is emerging as an important cytoprotective enzyme system in a variety of injury models. To optimize future therapeutic applications of HO-1, it is necessary to delineate the precise functions and mechanisms as well as modes of externally regulating HO-1 expression. Investigations have been limited by difficulties with the generation of HO-1 null mice and the lack of specific HO-1 inhibitors. ⋯ To study the function of HO-1 in I-R-induced lung injury, we designed small interfering RNA (siRNA) sequences that effectively suppress HO-1 expression both in vitro and in vivo in an organ-specific manner. In this study we show that there is enhanced apoptosis, via increased Fas expression and caspase 3 activity, in the presence of HO-1 siRNA in endothelial cells and mouse lung during I-R injury, whereas HO-1 overexpression attenuates apoptosis. To the best of our knowledge, we are the first to demonstrate that lung-specific siRNA delivery can be achieved by intranasal administration without the need for viral vectors or transfection agents in vivo, thereby obviating potential concerns for toxicity if siRNA technology is to have clinical application in the future.
-
Lecithin-cholesterol acyltransferase deficiency is frequently associated with hypertriglyceridemia (HTG) in animal models and humans. We investigated the mechanism of HTG in the ldlr-/- x lcat-/- (double knockout (dko)) mice using the ldlr-/- x lcat+/+ (knock-out (ko)) littermates as control. Mean fasting triglyceride (TG) levels in the dko mice were elevated 1.75-fold compared with their controls (p < 0.002). ⋯ The hepatic mRNA levels of LXRalpha (lxralpha) and its target genes including angiopoietin-like protein 3 (angptl-3) in the dko mice were unchanged. Fasting glucose and insulin levels were reduced by 31 and 42%, respectively in the dko mice, in conjunction with a 49% reduction in hepatic pepck-1 mRNA (p = 0.014). Both the HTG and the improved fasting glucose phenotype seen in the dko mice are at least in part attributable to an up-regulation of the hepatic srebp-1c gene.
-
Exposure of animals to hyperoxia results in respiratory failure and death within 72 h. Histologic evaluation of the lungs of these animals demonstrates epithelial apoptosis and necrosis. Although the generation of reactive oxygen species (ROS) is widely thought to be responsible for the cell death observed following exposure to hyperoxia, it is not clear whether they act upstream of activation of the cell death pathway or whether they are generated as a result of mitochondrial membrane permeabilization and caspase activation. ⋯ In a mouse lung epithelial cell line (MLE-12), the overexpression of Bcl-XL protected cells against hyperoxia by preventing the activation of Bax at the mitochondrial membrane. We conclude that exposure to hyperoxia results in Bax activation at the mitochondrial membrane and subsequent cytochrome c release. Bax activation at the mitochondrial membrane requires the generation of ROS and can be prevented by the overexpression of Bcl-XL.
-
Calcitonin, calcitonin gene-related peptide (CGRP), adrenomedullin (ADM), and amylin belong to a unique group of peptide hormones important for homeostasis in diverse tissues. Calcitonin is essential for calcium balance, whereas CGRP and ADM are important for neurotransmission and cardiovascular and respiratory regulation. Based on phylogenetic analysis, we identified intermedin as a novel member of the calcitonin/CGRP peptide family. ⋯ In vivo studies demonstrated that intermedin treatment led to blood pressure reduction in both normal and spontaneously hypertensive rats via interactions with the CRLR/RAMP receptor complexes. Furthermore, in vivo treatment in mice with intermedin led to suppression of gastric emptying activity and food intake. Thus, identification of intermedin as a novel member of the calcitonin/CGRP peptide family capable of signaling through CRLR/RAMP receptor complexes provides an additional player in the regulation of peripheral tissues by CRLR and will allow development of new therapeutic agents for pathologies associated with diverse vascular and gastrointestinal disorders.