The Journal of biological chemistry
-
In the absence and in the resolution of inflammatory responses, neutrophils rapidly undergo spontaneous apoptosis. Here we report about a new apoptosis pathway in these cells that requires calpain-1 activation and is essential for the enzymatic activation of the critical effector caspase-3. Decreased levels of calpastatin, a highly specific intrinsic inhibitor of calpain, resulted in activation of calpain-1, but not calpain-2, in neutrophils undergoing apoptosis, a process that was blocked by a specific calpain-1 inhibitor or by intracellular delivery of a calpastatin peptide. ⋯ Pharmacological calpain inhibition during spontaneous and Fas receptor-induced neutrophil apoptosis prevented cleavage of Bax into an 18-kDa fragment unable to interact with Bcl-xL. Moreover, calpain blocking prevented the mitochondrial release of cytochrome c and Smac, which was indispensable for caspase-3 processing and enzymatic activation, both in the presence and absence of agonistic anti-Fas receptor antibodies. Taken together, calpastatin and calpain-1 represent critical proximal elements in a cascade of pro-apoptotic events leading to Bax, mitochondria, and caspase-3 activation, and their altered expression appears to influence the life span of neutrophils under pathologic conditions.
-
Rho family GTPases play important roles in a variety of cellular processes, including actin cytoskeleton reorganization, transcription activation, and DNA synthesis. Dominant negative mutants of Rho GTPases, such as T17NRac1, that block the endogenous Rho protein activation by sequestering upstream guanine nucleotide exchange factors (GEFs) have been widely used to implicate specific members of the Rho family in various signaling pathways. We show here that such an approach could produce potentially misleading results since many Rho GEFs can interact with multiple Rho proteins promiscuously, and overexpression of one dominant negative Rho protein mutant may affect the activity of other members of the Rho family. ⋯ Moreover the mutant was able to selectively inhibit Dbl-induced Rac1 activation without affecting RhoA activity in cells. In contrast to the non-discriminative inhibitory effect displayed by T17NRac1, the Trio mutant was ineffective in inhibiting PDGF-stimulated DNA synthesis and Dbl-induced transformation, revealing the Rac-independent functions of PDGF and Dbl. These studies identify a conserved pair of amino acid residues of the Trio-Rac interaction that is likely to be essential to the GEF catalysis of Rho family GTPases and demonstrate that a dominant negative mutant derived from a Rho GTPase regulator constitutes a new generation of specific inhibitors of Rho GTPase signaling pathways.
-
Transforming growth factor (TGF)-beta has been associated with renal glomerular matrix accumulation. We previously showed that Smad3 promotes COL1A2 gene activation by TGF-beta1 in human glomerular mesangial cells. Here, we report that the PI3K/Akt pathway also plays a role in TGF-beta1-increased collagen I expression. ⋯ However, TGF-beta1-induced total serine phosphorylation of Smad3 is decreased by LY294002, suggesting that Smad3 is phosphorylated by the PI3K pathway at serine residues other than the direct TGF-beta receptor I target site. Thus, although the PI3K-PDK1-Akt pathway alone is insufficient to stimulate COL1A2 gene transcription, its activation by TGF-beta1 enhances Smad3 transcriptional activity leading to increased collagen I expression in human mesangial cells. This cross-talk between the Smad and PI3K pathways likely contributes to TGF-beta1 induction of glomerular scarring.
-
Lipopolysaccharide (LPS) is an agonist for Toll-like receptor (TLR) 4 and expresses many genes including NF-kappaB- and interferon regulatory factor (IRF)-3/IFN-inducible genes in macrophages and dendritic cells (DCs). TICAM-1/TRIF was identified as an adapter that facilitates activation of IRF-3 followed by expression of interferon (IFN)-beta genes in TLR3 signaling, but TICAM-1 does not directly bind TLR4. Although MyD88 and Mal/TIRAP adapters functions downstream of TLR4, DC maturation and IFN-beta induction are independent of MyD88 and Mal/TIRAP. ⋯ Hence, in LPS signaling TLR4 recruits two types of adapters, TIRAP and TICAM-2, to its cytoplasmic domain that are indirectly connected to two effective adapters, MyD88 and TICAM-1, respectively. We conclude that for LPS-TLR4-mediated activation of IFN-beta, the adapter complex of TICAM-2 and TICAM-1 plays a crucial role. This results in the construction of MyD88-dependent and -independent pathways separately downstream of the two distinct adapters.
-
The human cytomegalovirus (HCMV) UL33 gene is conserved among all beta-herpesviruses and encodes a protein that shows sequence similarity with chemokine receptors belonging to the family of G protein-coupled receptors. Here, we show that HCMV UL33 is predominantly transcribed as a spliced mRNA of which the 5' terminus is localized 55 bp upstream of the start codon. Like its homolog from rat cytomegalovirus (RCMV), R33, UL33 activates multiple signaling pathways in a ligand-independent manner. ⋯ Data obtained with infected cells show that HCMV induces CRE activation, and this effect is, at least in part, dependent on UL33 expression. Taken together, our data indicate that constitutive signaling of UL33 differs from that of R33 by promiscuous activation of G proteins of the Gq, G(i/o), as well as Gs class. Thus, HCMV may effectively use UL33 to orchestrate multiple signaling networks within infected cells.