The Journal of biological chemistry
-
We measured production of reactive oxygen species by intact mitochondria from rat skeletal muscle, heart, and liver under various experimental conditions. By using different substrates and inhibitors, we determined the sites of production (which complexes in the electron transport chain produced superoxide). By measuring hydrogen peroxide production in the absence and presence of exogenous superoxide dismutase, we established the topology of superoxide production (on which side of the mitochondrial inner membrane superoxide was produced). ⋯ We observed no difference in the rate of hydrogen peroxide production between rat and pigeon heart mitochondria respiring on complex I substrates. However, when complex I was fully reduced using rotenone, rat mitochondria released significantly more hydrogen peroxide than pigeon mitochondria. This difference was solely due to an elevated concentration of complex I in rat compared with pigeon heart mitochondria.
-
FGF-7 is induced after injury and induces the proliferation of keratinocytes. Like most members of the FGF family, the activity of FGF-7 is strongly influenced by binding to heparin, but this glycosaminoglycan is absent on keratinocyte cell surfaces and minimally present in the wound environment. In this investigation we compared the relative activity of heparan sulfate and chondroitin sulfate B (dermatan sulfate), glycosaminoglycans that are present in wounds. ⋯ Dermatan sulfate also enabled FGF-7-dependent phosphorylation of mitogen-activated protein kinase and promoted binding of radiolabeled FGF-7 to FGFR2 IIIb. In addition, dermatan sulfate and FGF-7 stimulated growth of normal keratinocytes in culture. Thus, dermatan sulfate, the predominant glycosaminoglycan in skin, is the principle cofactor for FGF-7.
-
Homocysteine metabolism is altered in diabetic patients. Cystathionine beta-synthase (CBS), a key enzyme involved in the transsulfuration pathway, which irreversibly converts homocysteine to cysteine, catalyzes the condensation of serine and homocysteine to cystathionine. Studies in streptozotocin-induced diabetic rats have shown that CBS enzyme activity is elevated in the liver but not in the kidney, and this effect is reversed by insulin treatment. ⋯ Transient transfections of HepG2 cells with a CBS-1b promoter luciferase reporter construct showed that the promoter activity was decreased by 70% after insulin treatment. These results show that insulin has a direct role in regulating homocysteine metabolism. Altered insulin levels in diseases such as diabetes may influence homocysteine metabolism by regulating the hepatic transsulfuration pathway.
-
Synthesis of proteins for iron homeostasis is regulated by specific, combinatorial mRNA/protein interactions between RNA stem-loop structures (iron-responsive elements, IREs) and iron-regulatory proteins (IRP1 and IRP2), controlling either mRNA translation or stability. The transferrin receptor 3'-untranslated region (TfR-3'-UTR) mRNA is unique in having five IREs, linked by AU-rich elements. ⋯ We show 1) equivalent IRP1 and IRP2 binding to multiple TfR-IRE RNAs; 2) increased IRP-dependent nuclease resistance of 5xIRE compared with lower IRE copy-number RNAs; 3) distorted TfR-IRE helix structure within the context of 5xIRE, detected by Cu-(phen)(2) binding/cleavage, that coincides with ferritin-IRE conformation and enhanced IRP2 binding; and 4) variable IRP1 and IRP2 expression in human cells and during development (IRP2-mRNA predominated). Changes in TfR-IRE structure conferred by the full length TfR-3'-UTR mRNA explain in part evolutionary conservation of multiple IRE-RNA, which allows TfR mRNA stabilization and receptor synthesis when IRP activity varies, and ensures iron uptake for cell growth.
-
The transcriptional coactivator PPARgamma coactivator-1alpha (PGC-1alpha) has been characterized as a broad regulator of cellular energy metabolism. Although PGC-1alpha functions through many transcription factors, the PGC-1alpha partners identified to date are unlikely to account for all of its biologic actions. The orphan nuclear receptor estrogen-related receptor alpha (ERRalpha) was identified in a yeast two-hybrid screen of a cardiac cDNA library as a novel PGC-1alpha-binding protein. ⋯ Thus, the PGC-1alpha. ERRalpha interaction is distinct from that of other nuclear receptor PGC-1alpha partners, including PPARalpha, hepatocyte nuclear factor-4alpha, and estrogen receptor alpha. These results identify ERRalpha and ERRgamma as novel PGC-1alpha interacting proteins, implicate ERR isoforms in the regulation of mitochondrial energy metabolism, and suggest a potential mechanism whereby PGC-1alpha selectively binds transcription factor partners.