The Journal of biological chemistry
-
We assessed the isoform-specific effects of apolipoprotein (apo) E on the response of Neuro-2a cells to the amyloid beta peptide (Abeta1-42). As determined by the intracellular staining pattern and the release of beta-hexosaminidase into the cytosol, apoE4-transfected cells treated with aggregated Abeta1-42 showed a greater tendency toward lysosomal leakage than neo- or apoE3-transfected cells. Abeta1-42 caused significantly greater cell death and more than 2-fold greater DNA fragmentation in apoE4-secreting than in apoE3-secreting or control cells. ⋯ Studies of phospholipid (dimyristoylphosphatidylcholine) bilayer vesicles encapsulating 5-(and-6)-carboxyfluorescein dye showed that apoE4 remodeled and disrupted the phospholipid vesicles to a greater extent than apoE3 or apoE2. In response to Abeta1-42, vesicles containing apoE4 were disrupted to a greater extent than those containing apoE3. These findings are consistent with apoE4 forming a reactive molecular intermediate that avidly binds phospholipid and may insert into the lysosomal membrane, destabilizing it and causing lysosomal leakage and apoptosis in response to Abeta1-42.
-
TASK-1 and TASK-3, members of the two-pore-domain channel family, are widely expressed leak potassium channels responsible for maintenance of cell membrane potential and input resistance. They are sites of action for a variety of modulatory agents, including volatile anesthetics and neurotransmitters/hormones, the latter acting via mechanisms that have remained elusive. To clarify these mechanisms, we generated mutant channels and found that alterations disrupting anesthetic (halothane) activation of these channels also disrupted transmitter (thyrotropin-releasing hormone, TRH) inhibition and did so to a similar degree. ⋯ Finally, tandem-linked TASK-1/TASK-3 heterodimeric channels were fully modulated by anesthetic and transmitter, and introduction of the identified mutations either into the TASK-1 or the TASK-3 portion of the channel was sufficient to disrupt both effects. Thus, both anesthetic activation and transmitter inhibition of these channels require a region at the interface between the final transmembrane domain and the cytoplasmic C terminus that has not been associated previously with receptor signal transduction. Our results also indicate a close molecular relationship between these two forms of modulation, one endogenous and the other clinically applied.
-
Membrane guanylate cyclase C (GC-C) is the receptor for guanylin, uroguanylin, and heat-stable enterotoxin (STa) in the intestine. GC-C-deficient mice show resistance to STa in intestine but saluretic and diuretic effects of uroguanylin and STa are not disturbed. Here we describe the cellular effects of these peptides using immortalized human kidney epithelial (IHKE-1) cells with properties of the proximal tubule, analyzed with the slow-whole-cell patch clamp technique. ⋯ In IHKE-1 cells GC-C was also detected by immunostaining. These findings suggest that GC-C is probably the receptor for guanylin and STa. For uroguanylin two distinct signaling pathways exist in IHKE-1 cells, one involves GC-C and cGMP as second messenger, the other is cGMP-independent and connected to a pertussis toxin-sensitive G protein.
-
A conserved glycine residue in the first transmembrane (TM1) domain of the beta2 subunit has been identified to be involved with desensitization induced by gamma-aminobutyric acid (GABA) and anesthetics. Recombinant GABA(A) receptors expressed in Sf9 cells were recorded using semi-fast agonist application. Upon direct activation by GABA or anesthetics, the main effect of the TM1 point mutation on the beta2 subunit (G219F) was to slow the time constant (tau) of desensitization. ⋯ For pentobarbital-induced currents (500 microm), the corresponding median tau values were 1.36 s (0.81; 1.41 s), 1.47 s (1.31; 2.38 s), and 2.82 s (2.21; 5.56 s) for alpha1beta2gamma2, alpha1(G223F)beta2gamma2, and alpha1beta2(G219F)gamma2, respectively. The tau value for the beta2-mutant receptor was significantly longer than that for alpha1beta2gamma2 (p < 0.01). The present findings suggest that this TM1 glycine residue is critical for the rate at which desensitization occurs and that both GABA and intravenous anesthetics implement an analogous pathway for generating desensitization.
-
Gram-negative bacterial sepsis commonly causes organ dysfunction and death in humans. Although circulating bacterial toxins trigger inflammation in sepsis, little is known about the composition of bacterial products released into the blood during sepsis or the contribution of various bacterial components to the pathogenesis of sepsis. We have shown that diverse Gram-negative bacteria release bacterial peptidoglycan-associated lipoprotein (PAL) into serum. ⋯ PAL caused death in sensitized C3H/HeJ mice. Mutant Escherichia coli bacteria with reduced levels of PAL or truncated PAL were less virulent than wild-type bacteria, as indicated by higher survival rates and lower circulating levels of interleukin 6 and bacteria in a model of peritonitis in lipopolysaccharide-responsive mice. The studies suggest that PAL may be an important bacterial mediator of Gram-negative sepsis.