The Journal of biological chemistry
-
The caudal-related homeobox gene Cdx-2/3 is a critical "master" control gene in embryogenesis. Mice heterozygous for a null mutation in Cdx-2/3 exhibit multiple malfunctions including tail abnormalities, stunted growth, a homeotic shift in vertebrae, and the development of multiple intestinal adenomatous polyps, indicating that Cdx-2/3 is haplo-insufficient. In vitro studies have identified more than a half-dozen downstream target genes expressed in pancreatic and intestinal cells for this transcription factor. ⋯ The DBS motif is critical for the autoregulation, whereas the TATA box may act as an attenuating element for the autoregulatory loop. Finally, overexpression of Cdx-2/3 in a pancreatic cell line activated the expression of the endogenous Cdx-2/3. Taken together, our results indicate that the dose-dependent phenotype of Cdx-2/3 expression on its downstream targets in vivo could be regulated initially via a transcriptional network involving cell type-specific autoregulation of the Cdx-2/3 promoter.
-
Sterol synthesis by the mevalonate pathway is modulated, in part, through feedback-regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). In both mammals and yeast, a non-sterol isoprenoid signal positively regulates the rate of HMGR degradation. To define more precisely the molecule that serves as the source of this signal, we have conducted both pharmacological and genetic manipulations of the mevalonate pathway in yeast. ⋯ Rather, the FPP-derived signal specifically modulates Hmg2p stability. In mammalian cells, an FPP-derived molecule also serves as a positive signal for HMGR degradation. Thus, both yeast and mammalian cells employ the same strategy for regulation of HMGR degradation, perhaps by conserved molecular processes.
-
In the endocrine pancreas, alpha-cell-specific expression of the glucagon gene is mediated by DNA-binding proteins that interact with the proximal G1 promoter element, which contains several AT-rich domains. The homeodomain transcription factors brain-4, pax-6, and cdx-2 have been shown to bind to these sites and to transactivate glucagon gene expression. ⋯ This enhancement was due to direct protein-protein interactions of both pax-6 and cdx-2 with the N-terminal C/H1 domain of p300. pax-6 and cdx-2 also directly interacted with one another at the protein level. pax-6, bound to its DNA recognition site in the glucagon G1 promoter element, tethered cdx-2 to the molecular complex of pax-6 and p300. Further, we found that the presence of cdx-2 enhanced the interaction of pax-6 with p300, thus establishing a molecular complex of transcription factors implicated in tissue-specific glucagon gene expression with the basal transcriptional machinery.
-
The contribution of desmosomes to epidermal integrity is evident in the inherited blistering disorder associated with the absence of a functional gene for plakophilin-1. To define the function of plakophilin-1 in desmosome assembly, interactions among the desmosomal cadherins, desmoplakin, and the armadillo family members plakoglobin and plakophilin-1 were examined. ⋯ We propose a model whereby plakoglobin serves as a linker between the cadherins and desmoplakin, whereas plakophilin-1 enhances lateral interactions between desmoplakin molecules. This model suggests that epidermal lesions in patients lacking plakophilin-1 are a consequence of the loss of integrity resulting from a decrease in binding sites for desmoplakin and intermediate filaments at desmosomes.
-
The ubiquitously expressed heterotrimeric guanine nucleotide-binding proteins (G-proteins) G12 and G13 have been shown to activate the small GTPase Rho. Rho stimulation leads to a rapid remodeling of the actin cytoskeleton and subsequent stress fiber formation. We investigated the involvement of G12 or G13 in stress fiber formation induced through a variety of Gq/G11-coupled receptors. ⋯ The activation of the Gq/G11-coupled endothelin ETB and angiotensin AT1A receptors failed to induce stress fiber formation. Lysophosphatidic acid, B2, and 5-HT2C receptor-mediated stress fiber formation was dependent on Galpha13 and involved epidermal growth factor (EGF) receptors, whereas thrombin, ETA, and V1A receptors induced stress fiber accumulation via Galpha12 in an EGF receptor-independent manner. Our data demonstrate that many Gq/G11-coupled receptors induce stress fiber assembly in the absence of Galphaq and Galpha11 and that this involves either a Galpha12 or a Galpha13/EGF receptor-mediated pathway.