The Journal of biological chemistry
-
Nitric oxide produced by inducible nitric-oxide synthase (iNOS) in different cells including brain cells in response to proinflammatory cytokines plays an important role in the pathophysiology of stroke and other neurodegenerative diseases. The present study underlines the importance of protein phosphatase (PP) 1 and 2A in the regulation of the differential expression of iNOS in rat primary astrocytes and macrophages. Compounds (calyculin A, microcystin, okadaic acid, and cantharidin) that inhibit PP 1 and 2A were found to stimulate the lipopolysaccharide (LPS)- and cytokine-mediated expression of iNOS and production of NO in rat primary astrocytes and C6 glial cells. ⋯ Interestingly, in both cell types, okadaic acid stimulated the LPS-mediated DNA binding as well as transcriptional activity of NF-kappaB and production of TNF-alpha. This study suggests that the stimulation of iNOS expression in astrocytes by inhibitors of PP 1/2A is possibly due to the stimulation of NF-kappaB activation; however, activation of NF-kappaB is not sufficient for the induction of iNOS in macrophages and that apart from NF-kappaB some other signaling pathway(s) sensitive to PP 1 and/or PP 2A is/are possibly involved in the regulation of iNOS in macrophages. This differential induction of iNOS as compared with similar activation of NF-kappaB by inhibitors of PP 1/2A indicates the involvement of different intracellular signaling events for the induction of iNOS in two cell types of the same animal species.
-
The SH2 domain containing signal transducers and activators of transcription (Stat proteins) are effector molecules downstream of cytokine receptors. Ligand/receptor engagement triggers Stat proteins tyrosine phosphorylation, dimerization, and translocation to the nucleus where they regulate gene transcription. Stat5, originally identified as a mammary gland growth factor, is an essential mediator of prolactin (PRL)-induced milk protein gene activation. ⋯ Furthermore, using different forms natural forms of the PRLR as well as receptor tyrosine to phenylalanine mutant forms, we determined that tyrosine phosphorylation of Stat5 is independent of PRLR phosphotyrosines. We established, however, that the C-terminal tyrosine of the PRLR Nb2 form, Tyr382, plays an essential positive role in PRLR-dependent Stat5 nuclear translocation and subsequently DNA binding. All together, our data propose a new model for activation of Stat5 through the PRLR, suggesting that Stat5 tyrosine phosphorylation and nuclear translocation are two separately regulated events.
-
Water channel aquaporin-1 (AQP1) is strongly expressed in kidney in proximal tubule and descending limb of Henle epithelia and in vasa recta endothelia. The grossly normal phenotype in human subjects deficient in AQP1 (Colton null blood group) and in AQP4 knockout mice has suggested that aquaporins (other than the vasopressin-regulated water channel AQP2) may not be important in mammalian physiology. We have generated transgenic mice lacking detectable AQP1 by targeted gene disruption. ⋯ Urine [Na+] in water-deprived knockout mice was <10 mM, and urine osmolality was not increased by the V2 agonist DDAVP. The results suggest that AQP1 knockout mice are unable to create a hypertonic medullary interstitium by countercurrent multiplication. AQP1 is thus required for the formation of a concentrated urine by the kidney.
-
The sphingomyelin signal transduction pathway is known to play a role in mediating the action of various cytokines. Here we examined the possible role of the sphingomyelin signaling pathway on lipopolysaccharide (LPS)- and cytokine-mediated production of NO and the expression of inducible nitric-oxide synthase (iNOS). Sphingomyelinase (SMase) treatment of astrocytes increased the cellular levels of ceramide without the induction of NO production. ⋯ Inhibition of ceramide and LPS-mediated induction of iNOS by antioxidant inhibitors of NF-kappaB (N-acetylcysteine and pyrrolidine dithiocarbamate) suggest that the stimulatory effect of ceramide on the induction of iNOS is due to the stimulation of NF-kappaB activation and that cellular redox plays a role in the activation of NF-kappaB and induction of iNOS. Inhibition of LPS-mediated as well as LPS and ceramide-mediated induction of iNOS and activation of NF-kappaB by PD98059, a specific inhibitor of activation of mitogen-activated protein (MAP) kinase kinase (MEK), and FPT inhibitor II, a selective inhibitor of Ras farnesyl protein transferase, indicate that the Ras-MAP kinase pathway is involved in LPS-ceramide induced activation of NF-kappaB and induction of iNOS, and that ceramide-mediated signaling events probably converge into the LPS-modulated MAP kinase signaling pathway resulting in greater activation of NF-kappaB and iNOS induction. This study illustrates a novel role of the sphingomyelin-ceramide signaling pathway in stimulating the expression of iNOS via LPS- or cytokine-mediated activation of NF-kappaB in astrocytes.
-
PTX3 is a prototypic long pentraxin consisting of a C-terminal 203-amino acid pentraxin-like domain coupled with an N-terminal 178-amino acid unrelated portion. The present study was designed to characterize the structure and ligand binding properties of human PTX3, in comparison with the classical pentraxins C-reactive protein and serum amyloid P component. Sequencing of Chinese hamster ovary cell-expressed PTX3 revealed that the mature secreted protein starts at residue 18 (Glu). ⋯ The Chinese hamster ovary cell-expressed pentraxin domain bound C1q when multimerized. Thus, as predicted on the basis of computer modeling, the prototypic long pentraxin PTX3 forms multimers, which differ from those formed by classical pentraxins in terms of protomer composition and requirement for disulfide bonds, and does not recognize CRP/SAP ligands. The capacity to bind C1q, mediated by the pentraxin domain, is consistent with the view that PTX3, produced in tissues by endothelial cells or macrophages in response to interleukin-1 and tumor necrosis factor, may act as a local regulator of innate immunity.