The Journal of biological chemistry
-
Mouse mast cell protease (mMCP) 1, mMCP-2, mMCP-4, and mMCP-5 are members of a family of related serine proteases whose genes reside within an approximately 850 kilobase (kb) complex on chromosome 14 that does not readily undergo crossover events. While mapping the mMCP-1 gene, we isolated a novel gene that encodes a homologous serine protease designated mMCP-9. The mMCP-9 and mMCP-1 genes are only approximately 7 kb apart on the chromosome and are oriented back to back. ⋯ This property may allow mMCP-9 to form multimeric complexes with serglycin proteoglycans and other negatively charged proteins inside the granule. Although mMCP-9 exhibits a >50% overall amino acid sequence identity with its homologous chymases, it has a unique substrate-binding cleft. This finding suggests that each member of the chromosome 14 family of serine proteases evolved to degrade a distinct group of proteins.
-
Recently we have shown that in fibroblasts (NIH 3T3 and Rat-1 cells) inhibition of protein geranylgeranylation leads to a G0/G1 arrest, whereas inhibition of protein farnesylation does not affect cell cycle distribution. Here we demonstrate that in human tumor cells the geranylgeranyltransferase-I (GGTase-I) inhibitor GGTI-298 blocked cells in G0/G1, whereas the farnesyltransferase (FTase) inhibitor FTI-277 showed a differential effect depending on the cell line. FTI-277 accumulated Calu-1 and A-549 lung carcinoma and Colo 357 pancreatic carcinoma cells in G2/M, T-24 bladder carcinoma, and HT-1080 fibrosarcoma cells in G0/G1, but had no effect on cell cycle distribution of pancreatic (Panc-1), breast (SKBr 3 and MDAMB-231), and head and neck (A-253) carcinoma cells. ⋯ There was little effect of GGTI-298 on the cellular levels of another cyclin- dependent kinase inhibitor p27KIP as well as cyclin E and cyclin D1. These results demonstrate that GGTase-I inhibitors arrest cells in G0/G1 and induce accumulation of p21WAF in a p53-independent manner and that FTase inhibitors can interfere with cell cycle events by a mechanism that involves neither p21WAF nor p27KIP. The results also point to the potential of GGTase-I inhibitors as agents capable of restoring growth arrest in cells lacking functional p53.
-
Malignant hyperthermia (MH) and central core disease (CCD) are autosomal dominant disorders of skeletal muscle in which a potentially fatal hypermetabolic crisis can be triggered by commonly used anesthetic agents. To date, 17 mutations in the human RYR1 gene encoding the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum (the ryanodine receptor) have been associated with MH and/or CCD. Although many of these mutations have been linked to MH and/or CCD, with high lod (log of the odds favoring linkage versus nonlinkage) scores, others have been found in single, small families. ⋯ The correlation was weaker, however, for halothane (r = 0.49, p > 0.05). Abnormal sensitivity in the Ca2+ photometry assay provides supporting evidence for a causal role in MH for each of 15 single amino acid mutations in the ryanodine receptor. The study demonstrates the usefulness of the cellular Ca2+ photometry assay in the assessment of the sensitivity to caffeine and halothane of specific ryanodine receptor mutants.
-
The hypoxia-inducible factor 1 transcriptional activator complex (HIF-1) is involved in the activation of the erythropoietin and several other hypoxia-responsive genes. The HIF-1 complex is composed of two protein subunits: HIF-1beta/ARNT (aryl hydrocarbon receptor nuclear translocator), which is constitutively expressed, and HIF-1alpha, which is not present in normal cells but induced under hypoxic conditions. The HIF-1alpha subunit is continuously synthesized and degraded under normoxic conditions, while it accumulates rapidly following exposure to low oxygen tensions. ⋯ The effect of proteasome inhibitors on the normoxic induction of HIF-1 binding activity was mimicked by the thiol reducing agent N-(2-mercaptopropionyl)-glycine and by the oxygen radical scavenger 2-acetamidoacrylic acid. Furthermore, N-(2-mercaptopropionyl)-glycine induced gene expression as measured by the stimulation of a HIF-1-luciferase expression vector and by the induction of erythropoietin mRNA in normoxic Hep 3B cells. These last findings strongly suggest that the hypoxia induced changes in HIF-1alpha stability and subsequent gene activation are mediated by redox-induced changes.
-
Transgenic mice were generated with cardiac-specific overexpression of the wild-type (WT) alpha1B-adrenergic receptor (AR) using the murine alpha-myosin heavy chain gene promoter. Previously, we described transgenic mice with alpha-myosin heavy chain-directed expression of a constitutively active mutant alpha1B-AR that had a phenotype of myocardial hypertrophy (Milano, C. A., Dolber, P. ⋯ Another potential contributor to the observed decreased myocardial signaling and function could be enhanced beta-AR desensitization as beta-adrenergic receptor kinase (betaARK1) activity was found to be significantly elevated (>3-fold) in myocardial extracts isolated from WT alpha1B-AR-overexpressing mice. This type of altered signal transduction may become critical in disease conditions such as heart failure where betaARK1 levels are elevated and beta-ARs are down-regulated, leading to a higher percentage of cardiac alpha1-ARs. Thus, these mice serve as a unique experimental model to study the in vivo interactions between alpha- and beta-ARs in the heart.