The Journal of biological chemistry
-
Molecular cloning has identified two vesicular monoamine transporters (VMATs), one expressed in non-neural cells of the periphery (VMAT1) and the other by multiple monoamine cell populations in the brain (VMAT2). Functional analysis has previously shown that VMAT2 has a higher affinity than VMAT1 for monoamine neurotransmitters as well as the inhibitor tetrabenazine. The analysis of chimeric transporters has also identified two major regions required for the high affinity interactions of VMAT2 with these ligands. ⋯ This mutually exclusive interaction with serotonin and tryptamine also suggests a physiological rationale for the existence of two VMATs. Surprisingly, the residue responsible for this difference, Tyr-434, also accounts for the higher affinity interaction of VMAT2 with tetrabenazine, histamine, and serotonin. Interestingly, replacement of Tyr-434 with alanine increases the affinity of VMAT2 for both serotonin and dopamine and reduces the rate of dopamine transport.
-
Elevated plasma fibrinogen levels are a major risk factor for thrombosis. This report shows two mechanisms by which fibrinogen can affect the fibrinolysis rate in vitro and thus may lead to thrombosis. First, the lysis rate of fibrin decreases as the initial concentration of fibrinogen increases. ⋯ Clots made from afibrinogenemic plasma reconstituted with gammaA/gamma' fibrinogen also showed significant resistance to lysis compared with gammaA/gammaA fibrinogen. These data demonstrate gammaA/gamma' fibrin is resistant to fibrinolysis, possibly as a result of concentrating factor XIII on the clot. The total fibrinogen concentration and the amount of gammaA/gamma' fibrinogen increase clot stability in vitro and thus may contribute independently to the risk of thrombosis in humans.
-
Estrogens induce cell proliferation in target tissues by stimulating progression through G1 phase of the cell cycle, but the underlying molecular targets remain undefined. To determine the role of the cyclin/cyclin-dependent kinase (CDK)/retinoblastoma protein (pRB) pathway in this response we treated MCF-7 breast cancer cells with the pure estrogen antagonist ICI 182780 to inhibit estrogen-induced gene expression and induce G1 phase arrest. Subsequent treatment with 17beta-estradiol resulted in the synchronous entry of cells into S phase commencing at 12 h. ⋯ These apparently conflicting data were resolved by performing gel filtration chromatography, which revealed that only a minority of cyclin E-Cdk2 complexes were active following estradiol treatment. Active complexes eluted at a higher molecular weight than inactive complexes, were relatively deficient in both p21 and p27, and contained Cdk2 with increased threonine 160 phosphorylation, consistent with a mechanism of activation of cyclin E-Cdk2 involving both reduced CDK inhibitor association and CDK-activating kinase-mediated phosphorylation of Cdk2. These results provide an explanation for the early activation of both cyclin D1-Cdk4 and cyclin E-Cdk2 complexes that accompany G1-S phase progression in response to estradiol.
-
The vesicular monoamine transporters (VMATs) package monoamine neurotransmitters into secretory vesicles for regulated exocytotic release. One isoform occurs in the adrenal gland (VMAT1) and another in the brain (VMAT2). To assess their potential for regulation, we have investigated the phosphorylation of the VMATs. ⋯ The protein kinase inhibitor CKI-7 and unlabeled GTP both block in vitro phosphorylation by cell homogenates, indicating a role for CKII and possibly CKI in vivo. Both kinases phosphorylate the VMAT2 fusion protein to a much greater extent than a similar fusion protein containing the carboxyl terminus of VMAT1, consistent with differential phosphorylation of the two transporters observed in intact cells. These results provide the first demonstration of phosphorylation of a vesicular neurotransmitter transporter and a potential mechanism for differential regulation of the two VMATs.
-
This study demonstrates the presence of positive and negative regulatory elements within a 2336-base pair-long region of the rat choline acetyltransferase (ChAT) gene promoter that cooperate to direct cell type-specific expression in cholinergic cells. A 21-base pair-long neuron-restrictive silencer element (NRSE) was identified in the proximal part of this region. This element was recognized by the neuron-restrictive silencer factor (NRSF), previously shown to regulate expression of other neuron-specific genes. ⋯ The distal part of the ChAT gene promoter showed cholinergic-specific enhancing activity, which stimulated promoter activity in cholinergic cells, but was inactive in non-cholinergic neuronal and non-neuronal cells. This enhancer region suppressed the activity of the ChAT NRSE in cholinergic cells, even after NRSF overexpression. Thus, at least two kinds of regulatory elements cooperate to direct ChAT gene expression to cholinergic neurons, namely a neuron-restrictive silencer element and a cholinergic-specific enhancer.