The Journal of biological chemistry
-
In adipose and muscle cells, insulin stimulates the exocytic translocation of vesicles containing GLUT4, a glucose transporter, and insulin-regulated aminopeptidase (IRAP), a transmembrane aminopeptidase. A substrate of IRAP is vasopressin, which controls water homeostasis. The physiological importance of IRAP translocation to inactivate vasopressin remains uncertain. ⋯ In cultured 3T3-L1 adipocytes, IRAP was present in TUG-bound membranes and was released by insulin stimulation. Together with previous results, these data support a model in which TUG controls vesicle translocation by interacting with IRAP as well as GLUT4. Furthermore, the effect of IRAP to reduce vasopressin activity is a physiologically important consequence of vesicle translocation, which is coordinated with the stimulation of glucose uptake.
-
Pannexin-1 (Panx1) is a large-pore membrane channel involved in the release of ATP and other signaling mediators. Little is known about the expression and functional role of Panx1 in the dorsal root ganglion (DRG) in the development of chronic neuropathic pain. In this study, we determined the epigenetic mechanism involved in increased Panx1 expression in the DRG after nerve injury. ⋯ In addition, siRNA knockdown of Panx1 expression in a DRG cell line significantly reduced caspase-1 release induced by neuronal depolarization. Our findings suggest that nerve injury increases Panx1 expression levels in the DRG through altered histone modifications. Panx1 up-regulation contributes to the development of neuropathic pain and stimulation of inflammasome signaling.
-
Zinc is an essential trace element that participates in a wide range of biological functions, including wound healing. Although Zn(2+) deficiency has been linked to compromised wound healing and tissue repair in human diseases, the molecular mechanisms underlying Zn(2+)-mediated tissue repair remain unknown. Our previous studies established that MG53, a TRIM (tripartite motif) family protein, is an essential component of the cell membrane repair machinery. ⋯ The effect of Zn(2+) on membrane repair is abolished in mg53(-/-) muscle fibers, suggesting that MG53 functions as a potential target for Zn(2+) during membrane repair. Mutagenesis studies suggested that both RING and B-box motifs of MG53 constitute Zn(2+)-binding domains that contribute to MG53-mediated membrane repair. Overall, this study establishes a base for Zn(2+) interaction with MG53 in protection against injury to the cell membrane.
-
Proteases that cleave protease-activated receptor-2 (PAR(2)) at Arg(36)↓Ser(37) reveal a tethered ligand that binds to the cleaved receptor. PAR(2) activates transient receptor potential (TRP) channels of nociceptive neurons to induce neurogenic inflammation and pain. Although proteases that cleave PAR(2) at non-canonical sites can trigger distinct signaling cascades, the functional importance of the PAR(2)-biased agonism is uncertain. ⋯ Intraplantar injection of elastase to mice caused edema and mechanical hyperalgesia by PAR(2)- and TRPV4-mediated mechanisms. Thus, the elastase-biased agonism of PAR(2) causes Gαs-dependent activation of adenylyl cyclase and PKA, which activates TRPV4 and sensitizes nociceptors to cause inflammation and pain. Our results identify a novel mechanism of elastase-induced activation of TRPV4 and expand the role of PAR(2) as a mediator of protease-driven inflammation and pain.
-
A family of six ceramide synthases with distinct but overlapping substrate specificities is responsible for generation of ceramides with acyl chains ranging from ∼14-26 carbons. Ceramide synthase 6 (CerS6) preferentially generates C14- and C16-ceramides, and we have previously shown that down-regulation of this enzyme decreases apoptotic susceptibility. In this study, we further evaluated how increased CerS6 expression impacts sphingolipid composition and metabolism. ⋯ Similar to CerS6, overexpression of CerS3-5 resulted in an ∼2-fold increase in luciferase reporter gene activity. Exogenous ceramide failed to induce reporter activity, while a CerS inhibitor and a catalytically inactive mutant of CerS6 failed to reduce it. Taken together, these results suggest that increased expression of CerS6 can mediate transcriptional activation of acid ceramidase in a JNK-dependent manner that is independent of CerS6 activity.