The Journal of biological chemistry
-
Contactin-associated protein 1 (CASPR1 or CNTNAP1) was recently reported to be expressed in brain microvascular endothelial cells (BMECs), the major component of the blood-brain barrier. To investigate CASPR1's physiological role in BMECs, here we used CASPR1 as a bait in a yeast two-hybrid screen to identify CASPR1-interacting proteins and identified the β3 subunit of Na+/K+-ATPase (ATP1B3) as a CASPR1-binding protein. Using recombinant and purified CASPR1, RNAi, GST-pulldown, immunofluorescence, immunoprecipitation, and Na+/K+-ATPase activity assays, we found that ATP1B3's core proteins, but not its glycosylated forms, interact with CASPR1, which was primarily located in the endoplasmic reticulum of BMECs. ⋯ Interestingly, shRNA-mediated CASPR1 silencing reduced glutamate efflux through the BMECs. These results demonstrate that CASPR1 binds with ATP1B3 and thereby contributes to the regulation of Na+/K+-ATPase maturation and trafficking to the plasma membrane in BMECs. We conclude that CASPR1-mediated regulation of Na+/K+-ATPase activity is important for glutamate transport across the blood-brain barrier.
-
Clinical Trial
Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders.
Diagnosis and treatment of fibromyalgia (FM) remains a challenge owing to the lack of reliable biomarkers. Our objective was to develop a rapid biomarker-based method for diagnosing FM by using vibrational spectroscopy to differentiate patients with FM from those with rheumatoid arthritis (RA), osteoarthritis (OA), or systemic lupus erythematosus (SLE) and to identify metabolites associated with these differences. Blood samples were collected from patients with a diagnosis of FM (n = 50), RA (n = 29), OA (n = 19), or SLE (n = 23). ⋯ Furthermore, the spectra correlated (r = 0.95 and 0.83 for IR and Raman, respectively) with FM pain severity measured with fibromyalgia impact questionnaire revised version (FIQR) assessments. Protein backbones and pyridine-carboxylic acids dominated this discrimination and might serve as biomarkers for syndromes such as FM. uHPLC-PDA-MS/MS provided insights into metabolites significantly differing among the disease groups, not only in molecular m/z + and m/z - values but also in UV-visible chromatograms. We conclude that vibrational spectroscopy may provide a reliable diagnostic test for differentiating FM from other disorders and for establishing serologic biomarkers of FM-associated pain.
-
Myocyte enhancer factor 2 (MEF2) transcription factors are key regulators of the development and adult phenotype of diverse tissues, including skeletal and cardiac muscles. Controlled by multiple post-translational modifications, MEF2D is an effector for the Ca2+/calmodulin-dependent protein phosphatase calcineurin (CaN, PP2B, and PPP3). CaN-catalyzed dephosphorylation promotes the desumoylation and acetylation of MEF2D, increasing its transcriptional activity. ⋯ Using immunoprecipitation and DNA-binding assays, we now show that the formation of mAKAPβ signalosomes is required for MEF2D dephosphorylation, desumoylation, and acetylation in C2C12 cells. Reduced MEF2D phosphorylation was coupled to a switch from type IIa histone deacetylase to p300 histone acetylase binding that correlated with increased MEF2D-dependent gene expression and ventricular myocyte hypertrophy. Together, these results highlight the importance of mAKAPβ signalosomes for regulating MEF2D activity in striated muscle, affirming mAKAPβ as a nodal regulator in the myocyte intracellular signaling network.
-
ADAM9 is an active member of the family of transmembrane ADAMs (a disintegrin and metalloproteases). It plays a role in processes such as bone formation and retinal neovascularization, and importantly, its expression in human cancers correlates with disease stage and poor prognosis. Functionally, ADAM9 can cleave several transmembrane proteins, thereby shedding their ectodomains from the cell surface. ⋯ However, double knockdown of SNX9 and SNX18 decreased ADAM9 internalization significantly, demonstrating a redundant role in this process. Moreover, SNX9 knockdown revealed a nonredundant effect on overall ADAM9 protein levels, resulting in increased ADAM9 levels at the cell surface, and a corresponding increase in the shedding of Ephrin receptor B4, a well-known ADAM9 substrate. Together, our findings demonstrate that intracellular SNX9-mediated trafficking constitutes an important ADAM9 regulatory pathway.
-
The mouse is a critical model in diabetes research, but most research in mice has been limited to a small number of mouse strains and limited genetic variation. Using the eight founder strains and both sexes of the Collaborative Cross (C57BL/6J (B6), A/J, 129S1/SvImJ (129), NOD/ShiLtJ (NOD), NZO/HILtJ (NZO), PWK/PhJ (PWK), WSB/EiJ (WSB), and CAST/EiJ (CAST)), we investigated the genetic dependence of diabetes-related metabolic phenotypes and insulin secretion. We found that strain background is associated with an extraordinary range in body weight, plasma glucose, insulin, triglycerides, and insulin secretion. ⋯ Prior studies, using only the B6 strain, concluded that adult mouse islets do not synthesize l-3,4-dihydroxyphenylalanine (l-DOPA), the product of Th and precursor of dopamine. Thus, the choice of the CAST strain, guided by our islet proteomic survey, was crucial for these discoveries. In summary, we provide a valuable data resource to the research community, and show that proteomic analysis identified a strain-specific pathway by which dopamine synthesized in β-cells inhibits insulin secretion.