The Journal of biological chemistry
-
Macrophages respond to external stimuli with rapid changes in expression of many genes. Different combinations of external stimuli lead to distinct polarized activation patterns, resulting in a spectrum of possible macrophage activation phenotypes. MicroRNAs (miRNAs) are small, noncoding RNAs that can repress the expression of many target genes. ⋯ Furthermore, expression of M1-associated transcripts was increased in THP-1 cells transfected with mimics of miR-29b, miR-125a-5p, or miR-155. The apparent inflammatory property of miR-29b and miR-125a-5p can be at least partially explained by repression of TNFAIP3, a negative regulator of NF-κB signaling. Overall, these data suggest miRNAs can contribute to changes in macrophage gene expression that occur in different exogenous activating conditions.
-
Sepsis is a major health problem in the United States with high incidence and elevated patient care cost. Using an animal model of sepsis, cecum ligation, and puncture, we observed that mice became rapidly hypothermic reaching a threshold temperature of 28 °C within 5-10 h after initiation of the insult, resulting in a reliable predictor of mortality, which occurred within 30-72 h of the initial procedure. ⋯ Removal of the injury source, ligated cecum, within 6 h of the initial insult resulted in increased survival, but not after 20 h of cecal ligation and puncture. We concluded that the therapeutic window for resolving sepsis is early after the initial insult and coincides with a stage of hyperinflammation that is followed by a condition of innate immune dysfunction in which reversion of the outcome is no longer possible.
-
The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GU in L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulated GU was sensitive to PI3K inhibition, whereas that induced by Met was not. ⋯ Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs.
-
Ischemic heart disease is the major cause of death in Western countries. CTRP9 (C1q/TNF-related protein 9) is a fat-derived plasma protein that has salutary effects on glucose metabolism and vascular function. However, the functional role of CTRP9 in ischemic heart disease has not been clarified. ⋯ Blockade of AMPK activity reversed the suppressive actions of CTRP9 on cardiomyocyte apoptosis. Knockdown of adiponectin receptor 1 diminished CTRP9-induced increases in AMPK phosphorylation and survival of cardiac myocytes. Our data suggest that CTRP9 protects against acute cardiac injury following ischemia-reperfusion via an AMPK-dependent mechanism.
-
The two age-prevalent diseases Alzheimer disease and type 2 diabetes mellitus share many common features including the deposition of amyloidogenic proteins, amyloid β protein (Aβ) and amylin (islet amyloid polypeptide), respectively. Recent evidence suggests that both Aβ and amylin may express their effects through the amylin receptor, although the precise mechanisms for this interaction at a cellular level are unknown. Here, we studied this by generating HEK293 cells with stable expression of an isoform of the amylin receptor family, amylin receptor-3 (AMY3). ⋯ In the presence of hAmylin, Aβ1-42 effects on HEK293-AMY3-expressing cells are occluded, suggesting a shared mechanism of action between the two peptides. Amylin receptor antagonist AC253 blocks increases in intracellular Ca(2+), activation of protein kinase A, MAPK, Akt, cFos, and cell death, which occur upon AMY3 activation with hAmylin, Aβ1-42, or their co-application. Our data suggest that AMY3 plays an important role by serving as a receptor target for actions Aβ and thus may represent a novel therapeutic target for development of compounds to treat neurodegenerative conditions such as Alzheimer disease.