Journal of neurology, neurosurgery, and psychiatry
-
J. Neurol. Neurosurg. Psychiatr. · Apr 1999
Clinical Trial Controlled Clinical TrialEMG responses to free fall in elderly subjects and akinetic rigid patients.
The EMG startle response to free fall was studied in young and old normal subjects, patients with absent vestibular function, and patients with akinetic-rigid syndromes. The aim was to detect any derangement in this early phase of the "landing response" in patient groups with a tendency to fall. In normal subjects the characteristics of a voluntary muscle contraction (tibialis anterior) was also compared when evoked by a non-startling sound and by the free fall startle. ⋯ (1) EMG responses in younger normal subjects occurred at: sternomastoid 54 ms, abdominals 69 ms, quadriceps 78 ms, deltoid 80 ms, and tibialis anterior 85 ms. This pattern of muscle activation, which is not a simple rostrocaudal progression, may be temporally/spatially organised in the startle brainstem centres. (2) Voluntary tibialis EMG activation was earlier and stronger in response to a startling stimulus (fall) than in response to a non-startling stimulus (sound). This suggests that the startle response can be regarded as a reticular mechanism enhancing motor responsiveness. (3) Elderly subjects showed similar activation sequences but delayed by about 20 ms. This delay is more than can be accounted for by slowing of central and peripheral motor conduction, therefore suggesting age dependent delay in central processing. (4) Avestibular patients had normal latencies indicating that the free fall startle can be elicited by non-vestibular inputs. (5) Latencies in patients with idiopathic Parkinson's disease were normal whereas responses were earlier in patients with multiple system atrophy (MSA) and delayed or absent in patients with Steele-Richardson-Olszewski (SRO) syndrome. The findings in this patient group suggest: (1) lack of dopaminergic influence on the timing of the startle response, (2) concurrent cerebellar involvement in MSA may cause startle disinhibition, and (3) extensive reticular damage in SRO severely interferes with the response to free fall.
-
J. Neurol. Neurosurg. Psychiatr. · Apr 1999
Clinical TrialElementary visual hallucinations, blindness, and headache in idiopathic occipital epilepsy: differentiation from migraine.
This is a qualitative and chronological analysis of ictal and postictal symptoms, frequency of seizures, family history, response to treatment, and prognosis in nine patients with idiopathic occipital epilepsy and visual seizures. Ictal elementary visual hallucinations are stereotyped for each patient, usually lasting for seconds. They consist of mainly multiple, bright coloured, small circular spots, circles, or balls. ⋯ Most of the patients are misdiagnosed as having migraine with aura, basilar migraine, acephalgic migraine, or migralepsy simply because physicians are not properly informed of differential diagnostic criteria. As a result, treatment may be delayed for years. Response to carbamazepine is excellent and seizures may remit.
-
J. Neurol. Neurosurg. Psychiatr. · Apr 1999
Letter Case ReportsCerebral infarction: a rare complication of wasp sting.
-
J. Neurol. Neurosurg. Psychiatr. · Mar 1999
Randomized Controlled Trial Clinical TrialPain after whiplash: a prospective controlled inception cohort study.
In Lithuania, there is little awareness of the notion that chronic symptoms may result from rear end collisions via the so-called whiplash injury. After most such collisions no contact with the health service is established. An opportunity therefore exists to study post-traumatic pain without the confounding factors present in western societies. ⋯ In a country were there is no preconceived notion of chronic pain arising from rear end collisions, and thus no fear of long term disability, and usually no involvement of the therapeutic community, insurance companies, or litigation, symptoms after an acute whiplash injury are self limiting, brief, and do not seem to evolve to the so-called late whiplash syndrome.
-
J. Neurol. Neurosurg. Psychiatr. · Feb 1999
Mechanisms of recovery from aphasia: evidence from positron emission tomography studies.
Language functions comprise a distributed neural system, largely lateralised to the left cerebral hemisphere. Late recovery from aphasia after a focal lesion, other than by behavioural strategies, has been attributed to one of two changes at a systems level: a laterality shift, with mirror region cortex in the contralateral cortex assuming the function(s) of the damaged region; or a partial lesion effect, with recovery of perilesional tissue to support impaired language functions. Functional neuroimaging with PET allows direct observations of brain functions at systems level. This study used PET to compare regional brain activations in response to a word retrieval task in normal subjects and in aphasic patients who had shown at least some recovery and were able to attempt the task. Emphasis has been placed on single subject analysis of the results as there is no reason to assume that the mechanisms of recovery are necessarily uniform among aphasic patients. ⋯ The normal subjects showed a left lateralised inferolateral temporal activation, reflecting retrieval of words appropriate in meaning to the cue from the semantic system. Lateralisation of frontal activations to the left was only relative, with right prefrontal involvement in half of the normal subjects. Frontal activations are associated with parallel psychological processes involved in word retrieval, including task initiation, short term (working) memory for the cue and responses, and prearticulatory processes (even though no overt articulation was required). There was little evidence of a laterality shift of word retrieval functions to the right temporal lobe after a left hemispheric lesion. In particular, left inferolateral temporal activation was seen in all patients except one, and he proved to be very inefficient at the task. The results provide indirect evidence that even limited salvage of peri-infarct tissue with acute stroke treatments will have an important impact on the rehabilitation of cognitive functions.