Journal of neuropathology and experimental neurology
-
J. Neuropathol. Exp. Neurol. · Jan 2010
Development and characterization of a novel human in vitro blood-nerve barrier model using primary endoneurial endothelial cells.
There are phenotypic and functional differences between vascular endothelium from different tissues and between microvascular and macrovascular endothelial cells (ECs) from the same tissue. Relatively little is known about the human blood-nerve barrier (BNB). We report the development of an in vitro BNB model using primary human endoneurial ECs freshly isolated and purified from decedent sciatic nerves via endoneurial stripping, connective tissue enzymatic digestion, and density centrifugation. ⋯ They also express specific transport and cellular adhesion molecules and tight junction proteins, consistent with cells that form a highly restrictive endothelial barrier similar to the blood-brain barrier. When cultured on collagen-coated transwell inserts, the primary human endoneurial ECs develop an in vitro BNB with high transendothelial electrical resistances (160 Omega x cm(2); maximal 12 days after seeding) and low solute permeability coefficient to fluoresceinated high-molecular weight (70 kDa) dextran (2.75 x 10(-3) cm/minute). This in vitro BNB model retains essential known or expected characteristics of the human BNB and has many potential applications for studies of solute, macromolecule, microbial, virus, and leukocyte interactions with this highly specialized endothelial barrier.
-
Since its introduction to the United States in 1999, West Nile virus (WNV) has become endemic in North America and has emerged as the most common cause of epidemic meningoencephalitis in North America and the leading cause of arboviral encephalitis in the United States. West Nile virus is maintained in nature by cycling between mosquito vectors and bird hosts; humans are incidental hosts. Transmission to humans occurs predominantly after a bite from an infected mosquito but has also occurred via transfusion of blood products, via organ transplantation from infected donors, transplacentally, and percutaneously through occupational exposure. ⋯ Reverse transcription polymerase chain reaction tests are useful to screen blood products and for surveillance of birds and mosquitoes. The pathological findings are typical of a viral meningoencephalitis and include microglial nodules, perivascular chronic inflammation, and variable neuronal loss with necrosis or neuronophagia. Treatment is largely supportive, and control of the mosquito vectors may reduce the incidence of human infections.
-
J. Neuropathol. Exp. Neurol. · Jul 2009
Review Case ReportsChronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury.
Since the 1920s, it has been known that the repetitive brain trauma associated with boxing may produce a progressive neurological deterioration, originally termed dementia pugilistica, and more recently, chronic traumatic encephalopathy (CTE). We review 48 cases of neuropathologically verified CTE recorded in the literature and document the detailed findings of CTE in 3 profession althletes, 1 football player and 2 boxers. Clinically, CTE is associated with memory disturbances, behavioral and personality changes, parkinsonism, and speech and gait abnormalities. ⋯ The neurofibrillary degeneration of CTE is distinguished from other tauopathies by preferential involvement of the superficial cortical layers, irregular patchy distribution in the frontal and temporal cortices, propensity for sulcal depths, prominent perivascular, periventricular, and subpial distribution, and marked accumulation of tau-immunoreactive astrocytes. Deposition of beta-amyloid, most commonly as diffuse plaques, occurs in fewer than half the cases. Chronic traumatic encephalopathy is a neuropathologically distinct slowly progressive tauopathy with a clear environmental etiology.
-
J. Neuropathol. Exp. Neurol. · Jun 2009
Systemic polyethylene glycol promotes neurological recovery and tissue sparing in rats after cervical spinal cord injury.
Polyethylene glycol (PEG) has been reported to possess fusogenic properties that may confer neuroprotection after spinal cord injury (SCI), but there is uncertainty regarding the mechanisms of PEG in vivo and the robustness of its protective effects. We hypothesized that PEG promotes preservation of cytoskeletal proteins associated with white matter protection and neurobehavioral recovery after SCI. In proof-of-principle experiments using a pin-drop organotypic culture model of SCI, PEG attenuated neural cell death. ⋯ Polyethylene glycol also promoted significant, although modest, neurobehavioral recovery after SCI. Collectively, these results indicate that PEG protects key axonal cytoskeletal proteins after SCI, and that the protection is associated with axonal preservation. The modest extent of locomotor recovery after treatment with PEG suggests, however, that this compound may notconfer sufficient neuroprotection to be used clinically as a single treatment.
-
J. Neuropathol. Exp. Neurol. · Oct 2008
Comparative StudyThe positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders.
Chronic microglial activation is an important component of many neurological disorders, and imaging activated microglia in vivo will enable the detection and improved treatment of neuroinflammation. 1-(2-chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carbox-amide (PK11195), a peripheral benzodiazepine receptor ligand, has been used to image neuroinflammation, but the extent to which PK11195 binding distinguishes activated microglia and reactive astrocytes is unclear. Moreover, PK11195 may lack sufficient sensitivity for detecting mild neuroinflammation. We hypothesized that N-(2,5-dimethoxybenzyl)-N-(4-fluoro-2-phenoxyphenyl) acetamide (DAA1106), a new ligand that binds specifically to peripheral benzodiazepine receptor, binds to activated microglia in human neurological diseases with higher affinity than does PK11195. ⋯ In all diseases, [3H]DAA1106 showed a higher binding affinity as reflected by lower dissociation constant (KD) values than that of [3H](R)-PK11195. Moreover, specific binding of both ligands correlated with the presence of activated microglia identified by immunohistochemistry in situ. We conclude that 1) ligands that bind peripheral benzodiazepine receptor mainly label activated microglia in human neurological disorders and that 2) DAA1106 may possess binding characteristics superior to those of PK11195, which may be beneficial for in vivo positron emission tomography imaging.