Medicine
-
Bronchitis is a common respiratory disease characterized by acute inflammation, edema, and necrosis of the small airways, leading to a significant pathological burden. Immune cells play a crucial role in combating bronchitis. This study aims to explore the causal relationship between immune cells and bronchitis using the Mendelian randomization approach. ⋯ Moreover, the study validated the robustness of these findings through leave-one-out analysis and the MR-Egger method, and quantitatively illustrated the impact of immune cells on the risk of bronchitis through forest plots. This study reveals the dual role of immune cells in bronchitis. The identified types of immune cells may increase the risk of bronchitis by promoting inflammatory responses and cell-mediated immune reactions, while other cell types may offer protection by promoting immune balance and effective defense.
-
The genetic basis of iridocyclitis, an inflammatory eye disease, remains poorly understood, particularly in relation to autoimmune diseases. This study aimed to explore the causal associations between 6 immune-related diseases and iridocyclitis using Mendelian randomization (MR). A total of 230 single nucleotide polymorphisms (SNPs) significantly associated with systemic lupus erythematosus, ankylosing spondylitis (AS), rheumatoid arthritis (RA), Graves disease (GD), Crohn disease (CD), and allergic contact dermatitis were identified based on stringent MR assumptions. ⋯ Heterogeneity was observed among the SNPs, but no significant horizontal pleiotropy was detected. This study identifies potential genetic links between AS, RA, CD, GD, and the risk of iridocyclitis, providing new insights into the genetic underpinnings of this eye disease. The results support the need for further investigation into the genetic and molecular mechanisms underlying these associations.
-
Understanding the role of the tumor microenvironment in colorectal cancer (CRC) progression remains a challenge due to its complexity. Investigating the interplay between immune cell characteristics, serum metabolites, inflammatory protein factors, and CRC could unveil novel therapeutic avenues. We used 2-sample Mendelian randomization (MR) on Genome-Wide Association Studies (GWAS) data to explore causal links between 731 immune cell characteristics, 1400 serum metabolites, 91 inflammatory proteins, and CRC. ⋯ Our study scrutinized 731 immune cell characteristics, 1400 serum metabolites, and 91 inflammatory protein factors within the tumor microenvironment. We confirmed causal relationships between 43 immune cell characteristics, 37 serum metabolites, and 7 inflammatory protein factors with CRC. These findings offer novel insights into the potential etiology, prevention, and treatment strategies for CRC.
-
Bioinformatics analysis helps to understand the underlying mechanisms and adjust diagnostic and treatment strategies for immunoglobulin A nephropathy (IgAN) by screening gene expression datasets. We explored the biological function of IgAN, and established and validated a diagnostic model for IgAN using weighted gene co-expression network analysis. Using the GSE93798 and GSE37460 datasets, we performed differential expression analysis, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, constructed a protein-protein network, and identified hub genes. ⋯ The calibration plot indicated that the nomogram-predicted probability of nonadherence was highly correlated with actual diagnosed nonadherence, and the decision curve analysis indicated that patients had a relatively good net benefit. The model and gene expression were also validated using an external dataset. Our study provides directions for exploring the potential molecular mechanisms of IgAN as well as diagnostic and therapeutic strategies.
-
The high incidence, disability, mortality, and recurrence rates of cerebral infarction impose a heavy burden on both the Chinese and global populations. It is essential for the early diagnosis, prevention, and protection against brain cell injury. To identify differentially expressed microRNAs (miRNAs) in plasma exosomes of patients with cerebral ischemic stroke, determine relevant biomarkers, and explore their potential signaling pathways. ⋯ Gene Ontology, Kyoto Encyclopedia of Genes, and genomes enrichment analyses indicated that the differentially expressed miRNAs and their target genes were mainly concentrated in the PI3K-AKt, mitogen-activated protein kinase, calcium, Ras, Rap1, and cAMP signaling pathways. The expression of plasma exosomal hsa-miR-1303, hsa-miR-125b-1-3p, and hsa-miR-1289 was significantly different in stroke patients than in the control group. These miRNAs may be involved in various signaling pathways related to cerebral infarction, providing a reference for further experimental research.