Medicine
-
This review delves into the intricate relationship between anemia, iron metabolism, and human immunodeficiency virus (HIV), aiming to unravel the interconnected pathways that contribute to the complex interplay between these 3 entities. A systematic exploration of relevant literature was conducted, encompassing studies examining the association between anemia, iron status, and HIV infection. Both clinical and preclinical investigations were analyzed to elucidate the underlying mechanisms linking these components. ⋯ Decoding the interconnected pathways of anemia, iron metabolism, and HIV is imperative for enhancing the holistic care of individuals with HIV/AIDS. A nuanced understanding of these relationships will inform the development of more precise interventions, optimizing the management of anemia in this population. Future research endeavors should focus on elucidating the intricate molecular mechanisms, paving the way for innovative therapeutic strategies in the context of HIV-associated anemia.
-
Review
Exploring the landscape of drug resistance in gastrointestinal cancer immunotherapy: A review.
Gastrointestinal (GI) cancers pose a significant challenge due to high prevalence and mortality. While advancements in detection and conventional treatments have been made, prognosis often remains poor, particularly for advanced-stage cancers. Immunotherapy has emerged as a transformative approach, leveraging the body immune system against cancer, including immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell transfer. ⋯ The review underscores the potential of ferroptosis induction as a novel approach. Looking forward, it highlights the need for personalized immunotherapies, understanding the influence of the gut microbiome, and further exploration of ferroptosis in overcoming resistance. While challenges persist, the continuous evolution in GI cancer immunotherapy research promises innovative treatments that could significantly improve patient outcomes.
-
Review Case Reports
Adrenomyeloneuropathy manifesting as adrenal insufficiency and bilateral lower extremity spastic paraplegia: A case report and literature review.
Adrenomyeloneuropathy (AMN) is a variant type of X-linked adrenoleukodystrophy, and it is a genetic metabolic disease with strong clinical heterogeneity so that it is easily misdiagnosed and underdiagnosed. Moreover, most patients with AMN have an insidious clinical onset and slow progression. Familiarity with the pathogenesis, clinical features, diagnosis, and treatment of AMN can help identify the disease at an early stage. ⋯ The clinical manifestations of AMN are diverse. When patients with adrenocortical dysfunction complicated with progressive spastic paraplegia of lower limbs are involved, AMN should be highly suspected, and the determination of very long-chain fatty acids and genetic testing should be performed as soon as possible to confirm the diagnosis because early treatment can help prevent or delay the progression of the disease.
-
Review Case Reports
A de novo variant in ZBTB18 gene caused autosomal dominant non-syndromic intellectual disability 22 syndrome: A case report and literature review.
Autosomal dominant non-syndromic intellectual disability 22 is a rare genetic disorder caused by the ZBTB18 gene. This disorder affects various parts of the body, leading to intellectual disability. It is noteworthy that only 31 cases of this disorder have been reported thus far. As the symptom severity may differ, doctors may face challenges in diagnosing it accurately. It is crucial to be familiar with this disorder's symptoms to receive proper diagnosis and essential medical care. ⋯ The clinical presentations of mental retardation, autosomal dominant, type 22 (MRD22) are complicated and varied. Although early diagnosis can be made according to typical clinical symptoms, whole exome sequencing is necessary for diagnosing MRD22, as our study indicates.
-
Sickle cell anemia (SCA) is a hereditary blood disorder characterized by the presence of abnormal hemoglobin, leading to the formation of sickle-shaped red blood cells. While much research has focused on the molecular and cellular mechanisms underlying the pathophysiology of SCA, recent attention has turned to the role of apoptosis, or programmed cell death, in the disease progression. This review aims to elucidate the intricate mechanisms of apoptosis in SCA patients and explore its implications in disease severity, complications, and potential therapeutic interventions. ⋯ Various factors, including oxidative stress, inflammation, and altered cell signaling pathways, converge to modulate the apoptotic response in SCA. Furthermore, the interaction between apoptotic cells and the vascular endothelium contributes to endothelial dysfunction, promoting the pathogenesis of vasculopathy and organ damage seen in SCA patients. In conclusion, unraveling the complexities of apoptosis in SCA provides valuable insights into the disease pathophysiology and offers novel avenues for therapeutic interventions.