British journal of pharmacology
-
Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the 'anti-reward' effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
Review Comparative Study
Comparison and analysis of the animal models used to study the effect of morphine on tumour growth and metastasis.
The effect of opioids on tumour growth and metastasis has been debated for many years, with recent emphasis on the possibility that they might influence the rate of disease-free survival after tumour resection when used in the perioperative pain management of cancer surgery patients. The literature presents conflicting and inconclusive in vitro and in vivo data about the potential effect of opioids, especially morphine, on tumour growth and metastasis. To inform clinical practice, appropriate animal models are needed to test whether opioids alter the course of tumour growth and metastasis. Here, we review the literature on animal-based studies testing the effect of morphine on cancer so far, and analyse differences between the models used that may explain the discrepancies in published results. Such analysis should elucidate the role of opioids in cancer and help define ideal pre-clinical models to provide definitive answers. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
Several studies suggest that heteromerization between μ (MOP) and δ (DOP) opioid receptors modulates the signalling properties of the individual receptors. For example, whereas activation of MOP receptors by an agonist induces G protein-mediated signalling, the same agonist induces β-arrestin-mediated signalling in the context of the MOP-DOP receptor heteromer. Moreover, heteromer-mediated signalling is allosterically modulated by a combination of MOP and DOP receptor ligands. This has implications in analgesia given that morphine-induced antinociception can be potentiated by DOP receptor ligands. Recently reagents selectively targeting the MOP-DOP receptor heteromer such as bivalent ligands, antibodies or membrane permeable peptides have been generated; these reagents are enabling studies to elucidate the contribution of endogenously expressed heteromers to analgesia as well as to the development of side-effects associated with chronic opioid use. Recent advances in drug screening technology have led to the identification of a MOP-DOP receptor heteromer-biased agonist that activates both G protein-mediated and β-arrestin-mediated signalling. Moreover, this heteromer-biased agonist exhibits potent antinociceptive activity but with reduced side-effects, suggesting that ligands targeting the MOP-DOP receptor heteromer form a basis for the development of novel therapeutics for the treatment of pain. In this review, we summarize findings regarding the biological and functional characteristics of the MOP-DOP receptor heteromer and the in vitro and in vivo properties of heteromer-selective ligands. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
-
Opiate analgesics such as morphine are often used for pain therapy. However, antinociceptive tolerance and dependence may develop with long-term use of these drugs. It was found that μ-opioid receptors can interact with δ-opioid receptors, and morphine antinociceptive tolerance can be reduced by blocking δ-opioid receptors. Recent studies have shown that μ- and δ-opioid receptors are co-expressed in a considerable number of small neurons in the dorsal root ganglion. The interaction of μ-opioid receptors with δ-opioid receptors in the nociceptive afferents is facilitated by the stimulus-induced cell-surface expression of δ-opioid receptors, and contributes to morphine tolerance. Further analysis of the molecular, cellular and neural circuit mechanisms that regulate the trafficking and interaction of opioid receptors and related signalling molecules in the pain pathway would help to elucidate the mechanism of opiate analgesia and improve pain therapy. ⋯ This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.