British journal of pharmacology
-
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with no effective treatment. Fasudil hydrochloride (fasudil), a potent rho kinase (ROCK) inhibitor, is useful for the treatment of ischaemic diseases. In previous reports, fasudil improved pathology in mouse models of Alzheimer's disease and spinal muscular atrophy, but there is no evidence in that it can affect ALS. We therefore investigated its effects on experimental models of ALS. ⋯ These findings indicate that fasudil may be effective at suppressing motor neuron degeneration and symptom progression in ALS. Hence, fasudil may have potential as a therapeutic agent for ALS treatment.
-
Distinct vasopressin receptors are involved in different physiological and behavioural functions. Presently, no selective agonist is available to specifically elucidate the functional roles of the V1A receptor in the rat, one of the most widely used animal models. FE 201874 is a new derivative of the human selective V1A receptor agonist F180. In this study, we performed a multi-approach pharmacological and functional characterization of FE 201874 to determine whether it is selective for V1A receptors. ⋯ On functional grounds, all the data demonstrate that FE 201874 is the first selective agonist of the rat V1A receptor isoform available. Hence, FE 201874 may have potential as a treatment for the vasodilator-induced hypotension occurring in conditions such as septic shock and could be the most suitable compound for discriminating between the behavioural effects of arginine vasopressin and oxytocin.
-
Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. ⋯ PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting neuroprotective effects of endogenous choline/ACh.
-
The role of inosine at the mammalian neuromuscular junction (NMJ) has not been clearly defined. Moreover, inosine was classically considered to be the inactive metabolite of adenosine. Hence, we investigated the effect of inosine on spontaneous and evoked ACh release, the mechanism underlying its modulatory action and the receptor type and signal transduction pathway involved. ⋯ Our results suggest that, at motor nerve terminals, inosine induces presynaptic inhibition of spontaneous and evoked ACh release by activating A3 receptors through a mechanism that involves L-type and P/Q-type VGCCs and the secretory machinery downstream of calcium influx. A3 receptors appear to be coupled to Gi/o protein. PKC and calmodulin may be involved in these effects of inosine.
-
Excitatory amino acid transporters (EAATs) in the CNS contribute to the clearance of glutamate released during neurotransmission. The aim of this study was to explore the role of EAATs in the regulation of locus coeruleus (LC) neurons by glutamate. ⋯ These results remark the importance of EAAT2 and EAAT3 in the regulation of rat LC by glutamate. Neuronal EAAT3 would be responsible for terminating the action of synaptically released glutamate, whereas glial EAAT2 would regulate tonic glutamate concentrations in this nucleus.