British journal of pharmacology
-
The primary use of local anaesthetics is to prevent or relieve pain by reversibly preventing action potential propagation through the inhibition of voltage-gated sodium channels. The tetrodotoxin-sensitive voltage-gated sodium channel subtype Na(v)1.7, abundantly expressed in pain-sensing neurons, plays a crucial role in perception and transmission of painful stimuli and in inherited chronic pain syndromes. Understanding the interaction of lidocaine with Na(v)1.7 channels could provide valuable insight into the drug's action in alleviating pain in distinct patient populations. The aim of this study was to determine how lidocaine interacts with multiple inactivated conformations of Na(v)1.7 channels. ⋯ Lidocaine decreased the transition of Na(v)1.7 channels to the slow inactivated state. The fast inactivation gate (domain III-IV linker) is important for potentiating the interaction of lidocaine with the Na(v)1.7 channel.
-
BACKGROUND AND PURPOSE We recently demonstrated that activation of the spinal sigma-1 receptor induces mechanical and thermal hypersensitivity via calcium-dependent second messenger cascades and phosphorylation of the spinal NMDA receptor GluN1 subunit (pGluN1). Here we examined the role of NO in this process, as it plays a critical role in PKC-mediated calcium signalling and the potentiation of NMDA receptor function. EXPERIMENTAL APPROACH The effects of intrathecal (i.t.) pretreatment with nNOS inhibitors on PRE084 (sigma-1 receptor agonist)-induced pain were assessed in mice by use of mechanical allodynia and thermal hyperalgesia tests. ⋯ PRE084 also time-dependently decreased the ratio of phosphorylated nNOS (pnNOS) to nNOS expression and the number of spinal pnNOS-ir cells. This decrease in pnNOS was prevented by BD1047, a sigma-1 receptor antagonist and cyclosporin A, a calcineurin inhibitor, but not by a sGC inhibitor. CONCLUSIONS AND IMPLICATIONS Spinal sigma-1 receptor-induced sensitization is mediated by an increase in nNOS activity, which is associated with an NO-induced increase in PKC-dependent pGluN1 expression.
-
The endogenous cannabinoid system participates in oligodendrocyte progenitor differentiation in vitro. To determine the effect of synthetic cannabinoids on oligodendrocyte differentiation, we exposed differentiating cultures of oligodendrocytes with cannabinoid CB(1), CB(2) and CB(1)/CB(2) receptor agonists and antagonists. The response of the PI3K/Akt and the mammalian target of rapamycin (mTOR) signalling pathways were studied as effectors of cannabinoid activity. ⋯ Activation of cannabinoid CB(1) or CB(2) receptors with selective agonists accelerated oligodendrocyte differentiation through the mTOR and Akt signalling pathways.
-
BACKGROUND AND PURPOSE The endocannabinoid 2-arachidonoylglycerol (2-AG) is degraded primarily by monoacylglycerol lipase (MGL). We compared peripheral antinociceptive effects of JZL184, a novel irreversible MGL inhibitor, with the reversible MGL-preferring inhibitor URB602 and exogenous 2-AG in rats. EXPERIMENTAL APPROACH Nociception in the formalin test was assessed in groups receiving dorsal paw injections of vehicle, JZL184 (0.001-300 µg), URB602 (0.001-600 µg), 2-AG (ED(50)), 2-AG + JZL184 (at their ED(50)), 2-AG + URB602 (at their ED(50)), AM251 (80 µg), AM251 + JZL184 (10 µg), AM630 (25 µg) or AM630 + JZL184 (10 µg). ⋯ CONCLUSIONS AND IMPLICATIONS MGL inhibitors suppressed formalin-induced pain through peripheral CB(1) and CB(2) receptor mechanisms. MGL inhibition increased paw skin 2-AG accumulation to mediate these effects. MGL represents a target for the treatment of inflammatory pain.
-
While arachidonyl ethanolamine (anandamide) produces pharmacological effects mediated by cannabinoid CB1 receptors, it is also an agonist at the transient receptor potential vanilloid type 1 (TRPV1) ion channel. This study examined the cellular actions of anandamide in the midbrain periaqueductal grey (PAG), a region implicated in the analgesic actions of cannabinoids, and which expresses both CB1 receptors and TRPV1. ⋯ These results suggest that the actions of anandamide within PAG are limited by enzymatic degradation by FAAH. FAAH blockade unmasks both presynaptic inhibition and excitation of glutamatergic synaptic transmission which are mediated via CB1 receptors and TRPV1 respectively.