Medical hypotheses
-
Coronavirus disease 2019 (COVID-19) is an infectious disease with fast spreading all over the world caused by the SARS-CoV-2 virus which can culminate in a severe acute respiratory syndrome by the injury caused in the lungs. However, other organs can be also damaged. SARS-CoV-2 enter into the host cells using the angiotensin-converting enzyme 2 (ACE2) as receptor, like its ancestor SARS-CoV. ⋯ In this opinion article, we conjecture a dialogue by the figure of Sérgio Ferreira which brought together basic science of classical pharmacology and clinical repercussions in COVID-19, then we propose that in the course of SARS-CoV-2 infection: i) downregulation of ACE2 impairs the angiotensin II and DABK inactivation; ii) BK and its metabolite DABK seems to be in elevated levels in tissues by interferences in kallikrein/kinin system; iii) BK1 receptor contributes to the outbreak and maintenance of the inflammatory response; iv) kallikrein/kinin system crosstalks to RAS and coagulation system, linking inflammation to thrombosis and organ injury. We hypothesize that targeting the kallikrein/kinin system and BKB1R pathway may be beneficial in SARS-CoV-2 infection, especially on early stages. This route of inference should be experimentally verified by SARS-CoV-2 infected mice.
-
COVID-19 is the pandemic outbreak that is caused by SARS-CoV-2 virus from December, 2019. Human race do not know the curative measure of this devastating disease. In today's era of nanotechnology, it may use its knowledge to develop molecular vaccine to combat this disease. ⋯ The nanoconjugate may comprise with the inorganic nanoparticle layered double hydroxide intercalated with shRNA-plasmid that have a sequence targeting towards the viral genome or viral mRNA. This nanoconjugate may be used as a nasal spray to deliver the shRNA-plasmid to the target site. The nanoconjugate will have several advantages such as they are biocompatible, they forms as stable knockdown to the target cells and they are stable in the nasal mucosa.
-
Asymptomatic or minimally symptomatic infection with COVID-19 can result in silent transmission to large numbers of individuals, resulting in expansion of the pandemic with a global increase in morbidity and mortality. New ways of screening the general population for COVID-19 are urgently needed along with novel effective prevention and treatment strategies. ⋯ A three-part prevention, diagnostic, and treatment plan is proposed for addressing the severe complications of COVID-19. Digital monitoring of symptoms to clinically diagnose early exposure and response to treatment; prevention with ivermectin as well as nutritional therapies that support a healthy immune response; treatment with anti-inflammatory therapies that block NF-κB and activate Nrf2 pathways, as well as novel therapies that address COVID-19 pneumonia and ARDS with DIC including anticoagulation and/or novel respiratory therapies with or without acetazolamide and sildenafil. These three broad-based interventions urgently need to be subjected to randomized, controlled trials.
-
Recently, a mini-review was published in the Medical Hypotheses journal by Usul Afsar entitled 2019-nCoV-SARS-CoV-2 (COVID-19) infection: Cruciality of Furin and relevance with cancer. Previous studies have pointed out that disruption of the proteolytic cleavage of proteins can promote infectious and non-infectious diseases. The last few weeks have been marked by an important revelation concerning the pathophysiology of SARS-CoV-2. ⋯ Recent data indicate that SARS-CoV-2 enters human cells by binding to angiotensin-converting enzyme 2. Subsequently, the S protein is cleaved by transmembrane protease serine 2 with the help of FURIN which facilitates the entry of the virus into the cell after binding. Furthermore, it seems that FURIN is implicated in the pathogenesis of SARS-CoV-2 and potentially in the increased rates of human-to-human transmission.
-
In coronavirus disease-19 (COVID-19), four major factors have been correlated with worse prognosis: aging, hypertension, obesity, and exposure to androgen hormones. Angiotensin-converting enzyme-2 (ACE2) receptor, regulation of the renin-angiotensin-aldosterone system (RAAS), and transmembrane serine protease 2 (TMPRSS2) action are critical for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cell entry and infectivity. ⋯ Current data shows that spironolactone may concurrently mitigate abnormal ACE2 expression, correct the balances membrane-attached and free circulating ACE2 and between angiotensin II and Angiotensin-(1-7) (Ang-(1-7)), suppress androgen-mediated TMPRSS2 activity, and inhibit obesity-related RAAS dysfunctions, with consequent decrease of viral priming. Hence, spironolactone may provide protection from SARS-CoV-2, and has sufficient plausibility to be clinically tested, particularly in the early stages of COVID-19.