Medical hypotheses
-
SARS-CoV-2, the agent of COVID-19, shares a lineage with SARS-CoV-1, and a common fatal pulmonary profile but with striking differences in presentation, clinical course, and response to treatment. In contrast to SARS-CoV-1 (SARS), COVID-19 has presented as an often bi-phasic, multi-organ pathology, with a proclivity for severe disease in the elderly and those with hypertension, diabetes and cardiovascular disease. Whilst death is usually related to respiratory collapse, autopsy reveals multi-organ pathology. ⋯ Our proposed mechanism of lung injury provides an explanation for early hypoxia without reduction in lung compliance and suggests a need for revision of treatment protocols to address vasoconstriction, thromboprophylaxis, and to minimize additional small airways and alveolar trauma via ventilation choice. Our model predicts long term sequelae of scarring/fibrosis in vessels, lungs, renal and cardiac tissue with protracted illness in at-risk individuals. It is hoped that our model stimulates review of current diagnostic and therapeutic intervention protocols, particularly with respect to early anticoagulation, vasodilatation and revision of ventilatory support choices.
-
At the end of 2019, there was an outbreak of a new Coronavirus 2019 (COVID-19 disease). Studies suggest that SARS-CoV-2 can cause infection in the central nervous system (CNS) and trigger neurological symptoms that include headache, nausea and vomiting, mental confusion and loss of smell or taste. These findings reveal that Coronaviruses have neurological tropism and neuroinvasive capacity. ⋯ Our hypothesis suggests that SARS-CoV-2 can cause encephalitis through the production of inflammatory mediators and activation of immune system cells resulting from the interaction of the ACE2 receptor with the viral Spike protein that causes an increase in angiotensin II. This mechanism has the ability to activate immune system cells by exacerbating stimuli at the angiotensin 2 receptor (AT2R). Thus, it leads to a status of brain injury preceded by vascular damage and destruction of the blood-brain barrier, making it responsible for the installation of acute inflammation.
-
Recently, a new coronavirus (SARS-CoV-2) was discovered in China. Due to its high level of contagion, it has already reached most countries, quickly becoming a pandemic. Although the most common symptoms are related to breathing problems, SARS-CoV-2 infections also affect the gastrointestinal tract culminating in inflammation and diarrhea. ⋯ Thus, we propose that the new coronavirus causes a change in the intestinal microbiota, which culminates in a diarrheal process through the ACE2/mTOR/autophagy pathway into enterocytes. Our assumption is supported by premises that unregulated intestinal microbiota increases the susceptibility to other diseases and extra-intestinal manifestations, which can even cause remote damage in lungs. These putative connections lead us to suggest and encourage future studies aiming at assessing the aforementioned hypothesis and regulating dysbiosis caused by SARS-CoV-2 infection, in order to confirm the decrease in lung injuries and the improvement in the prognosis of the disease.
-
COVID pandemic consists one of the most challenging medical realities. Apart from affecting respiratory system, current evidence has demonstrated multiorgan manifestations that SARS-Cov-2 infection may actually have. However, one of the medical hypotheses not yet thoroughly tested is the impact on female reproductive system and more specifically cervix. ⋯ We would therefore like to launch our idea to control for SARS-CoV-2 infection in cervical specimen as well as examine potential correlation with HPV infection. Potential scientific proof of such hypothesis would change much regarding follow-up of HPV-positive patients while also triggering further research regarding aitiopathogenetic pathways of COVID. Communication of such a medical hypothesis could potentially motivate colleagues worldwide to expand their interest also on the research of SARS-CoV-2 cervical infection, in an effort to optimize our level of knowledge towards this new threatening and unknown reality of SARS-CoV-2.
-
Perioperative neurocognitive disorders (PND) are highly prevalent after surgery, especially in aged patients. PND results in long-term morbidity and mortality with unclear pathophysiologic mechanisms. As a key hallmark of PND, surgery-induced neuroinflammation resulted from the invading of exogenous tracers into the cerebral parenchyma, causing hippocampal neuroinflammation and cognitive impairment. ⋯ Thus, we speculate that IL-32 may participate in the regulation of the surgery-induced neuroinflammation during the parthenogenesis of PND. The isoforms, spatio-temporal regulation of IL-32 may determine its pro- or anti-inflammation properties in parthenogenesis of PND. Therefore, IL-32 could be a putative therapeutic target for the prevention and reversal of PND in the future.