Medical hypotheses
-
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents the largest current health challenge for the society. At the moment, the therapeutic strategies to deal with this disease are only supportive. It is well known that zinc (Zn) possesses a variety of direct and indirect antiviral properties, which are realized through different mechanisms. ⋯ Zn may also protect or stabilize the cell membrane which could contribute to blocking of the virus entry into the cell. On the other hand, it was demonstrated that Zn may inhibit viral replication by alteration of the proteolytic processing of replicase polyproteins and RNA-dependent RNA polymerase (RdRp) in rhinoviruses, HCV, and influenza virus, and diminish the RNA-synthesizing activity of nidoviruses, for which SARS-CoV-2 belongs. Therefore, it may be hypothesized that Zn supplementation may be of potential benefit for prophylaxis and treatment of COVID-19.
-
The recent identification of Vitamin E acetate as one of the causal agents for the e-cigarette, or vaping, product use associated lung injury (EVALI) is a major milestone. In membrane biophysics, Vitamin E is a linactant and a potent modulator of lateral phase separation that effectively reduces the line tension at the two-dimensional phase boundaries and thereby exponentially increases the surface viscosity of the pulmonary surfactant. Disrupted dynamics of respiratory compression-expansion cycling may result in an extensive hypoxemia, leading to an acute respiratory distress entailing the formation of intraalveolar lipid-laden macrophages. Supplementation of pulmonary surfactants which retain moderate level of cholesterol and controlled hypothermia for patients are recommended when the hypothesis that the line-active property of the vitamin derivative drives the pathogenesis of EVALI holds.
-
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected health care service practices worldwide. Therefore, a global reaction to prepare health care systems is mandatory. ⋯ Since we do not know how long we should face this universal issue, using antecedent pharmacotherapies for reducing oral-respiratory secretions to combat this virus might play a role in this regard. Given that currently there is no definitive cure for COVID-19, so we hypothesize that, considering drug solutions to reduce saliva and droplet production may be helpful in controlling Coronavirus spread during aerosol and respiratory droplet producing procedures.
-
Recently, a new coronavirus (SARS-CoV-2) was discovered in China. Due to its high level of contagion, it has already reached most countries, quickly becoming a pandemic. Although the most common symptoms are related to breathing problems, SARS-CoV-2 infections also affect the gastrointestinal tract culminating in inflammation and diarrhea. ⋯ Thus, we propose that the new coronavirus causes a change in the intestinal microbiota, which culminates in a diarrheal process through the ACE2/mTOR/autophagy pathway into enterocytes. Our assumption is supported by premises that unregulated intestinal microbiota increases the susceptibility to other diseases and extra-intestinal manifestations, which can even cause remote damage in lungs. These putative connections lead us to suggest and encourage future studies aiming at assessing the aforementioned hypothesis and regulating dysbiosis caused by SARS-CoV-2 infection, in order to confirm the decrease in lung injuries and the improvement in the prognosis of the disease.
-
SARS-CoV-2, the agent of COVID-19, shares a lineage with SARS-CoV-1, and a common fatal pulmonary profile but with striking differences in presentation, clinical course, and response to treatment. In contrast to SARS-CoV-1 (SARS), COVID-19 has presented as an often bi-phasic, multi-organ pathology, with a proclivity for severe disease in the elderly and those with hypertension, diabetes and cardiovascular disease. Whilst death is usually related to respiratory collapse, autopsy reveals multi-organ pathology. ⋯ Our proposed mechanism of lung injury provides an explanation for early hypoxia without reduction in lung compliance and suggests a need for revision of treatment protocols to address vasoconstriction, thromboprophylaxis, and to minimize additional small airways and alveolar trauma via ventilation choice. Our model predicts long term sequelae of scarring/fibrosis in vessels, lungs, renal and cardiac tissue with protracted illness in at-risk individuals. It is hoped that our model stimulates review of current diagnostic and therapeutic intervention protocols, particularly with respect to early anticoagulation, vasodilatation and revision of ventilatory support choices.