Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Jul 2008
A pathogenic dyskerin mutation impairs proliferation and activates a DNA damage response independent of telomere length in mice.
Telomeres are nucleoprotein structures that cap the ends of chromosomes, protecting them from exonucleases and distinguishing them from double-stranded breaks. Their integrity is maintained by telomerase, an enzyme consisting of a reverse transcriptase, TERT and an RNA template, TERC, and other components, including the pseudouridine synthase, dyskerin, the product of the DKC1 gene. When telomeres become critically short, a p53-dependent pathway causing cell cycle arrest is induced that can lead to senescence, apoptosis, or, rarely to genomic instability and transformation. ⋯ Hemizygous male mutant cells showed a strikingly enhanced DNA damage response via the ATM/p53 pathway after treatment with etoposide with a significant number of DNA damage foci colocalizing with telomeres in cytological preparations. We conclude that dyskerin mutations cause slow growth independently of telomere shortening and that this slow growth is the result of the induction of DNA damage. Thus, dyskerin interacts with telomerase and affects telomere maintenance independently of telomere length.
-
Proc. Natl. Acad. Sci. U.S.A. · Jun 2008
Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita.
Dyskeratosis congenita is a premature aging syndrome characterized by muco-cutaneous features and a range of other abnormalities, including early greying, dental loss, osteoporosis, and malignancy. Dyskeratosis congenita cells age prematurely and have very short telomeres. Patients have mutations in genes that encode components of the telomerase complex (dyskerin, TERC, TERT, and NOP10), important in the maintenance of telomeres. ⋯ These findings suggest that, in human cells, GAR1 has a different impact on the accumulation of TERC compared with dyskerin, NOP10, and NHP2. Most of the mutations so far identified in patients with classical dyskeratosis congenita impact either directly or indirectly on the stability of RNAs. In keeping with this effect, patients with dyskerin, NOP10, and now NHP2 mutations have all been shown to have low levels of telomerase RNA in their peripheral blood, providing direct evidence of their role in telomere maintenance in humans.
-
Proc. Natl. Acad. Sci. U.S.A. · Jun 2008
Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is a high-risk infectious pathogen. In the proposed model of respiratory failure, SARS-CoV down-regulates its receptor, angiotensin-converting enzyme 2 (ACE2), but the mechanism involved is unknown. We found that the spike protein of SARS-CoV (SARS-S) induced TNF-alpha-converting enzyme (TACE)-dependent shedding of the ACE2 ectodomain. ⋯ Intriguingly, viral infection, judged by real-time RT-PCR analysis of SARS-CoV mRNA expression, was significantly attenuated by deletion of the cytoplasmic tail of ACE2 or knock-down of TACE expression by siRNA. These data suggest that cellular signals triggered by the interaction of SARS-CoV with ACE2 are positively involved in viral entry but lead to tissue damage. These findings may lead to the development of anti-SARS-CoV agents.
-
Proc. Natl. Acad. Sci. U.S.A. · May 2008
Cerebellar-dependent motor learning is based on pruning a Purkinje cell population response.
The improvement of motor behavior, based on experience, is a form of learning that is critically dependent on the cerebellum. A well studied example of cerebellar motor learning is short-term saccadic adaptation (STSA). In STSA, information on saccadic errors is used to improve future saccades. ⋯ This suggests that the duration of normal as well as gain-increased saccades is determined by appropriately setting the end of PB end. However, the duration of gain-decreased saccades is apparently not modified by the cerebellum because the PB signals ends too early to determine saccade end. In summary, STSA, and most probably cerebellar-dependent learning in general, is based on optimizing the shape of a PC-SS population response.
-
Proc. Natl. Acad. Sci. U.S.A. · Apr 2008
MKP-1 inhibits high NaCl-induced activation of p38 but does not inhibit the activation of TonEBP/OREBP: opposite roles of p38alpha and p38delta.
High NaCl rapidly activates p38 MAPK by phosphorylating it, the phosphorylation presumably being regulated by a balance of kinases and phosphatases. Kinases are known, but the phosphatases are uncertain. Our initial purpose was to identify the phosphatases. ⋯ We conclude that high NaCl inhibits MKP-1, which contributes to the activation of p38. However, opposing actions of p38alpha and p38delta negate any effect on TonEBP/OREBP activity. Thus, activation of p38 isoforms by hypertonicity does not contribute to activation of TonEBP/OREBP because of opposing effects of p38alpha and p38delta, and effects of inhibitors of p38 depend on which isoform is affected, which can be misleading.