Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2001
Arousal effect of orexin A depends on activation of the histaminergic system.
Orexin neurons are exclusively localized in the lateral hypothalamic area and project their fibers to the entire central nervous system, including the histaminergic tuberomammillary nucleus (TMN). Dysfunction of the orexin system results in the sleep disorder narcolepsy, but the role of orexin in physiological sleep-wake regulation and the mechanisms involved remain to be elucidated. Here we provide several lines of evidence that orexin A induces wakefulness by means of the TMN and histamine H(1) receptor (H1R). ⋯ Microdialysis studies showed that application of orexin A to the TMN increased histamine release from both the medial preoptic area and the frontal cortex by approximately 2-fold over the baseline for 80 to 160 min in a dose-dependent manner. Furthermore, infusion of orexin A (1.5 pmol/min) for 6 hr into the lateral ventricle of mice produced a significant increase in wakefulness during the 8 hr after starting infusion to the same level as the wakefulness observed during the active period in wild-type mice, but not at all in H1R gene knockout mice. These findings strongly indicate that the arousal effect of orexin A depends on the activation of histaminergic neurotransmission mediated by H1R.
-
Proc. Natl. Acad. Sci. U.S.A. · Jul 2001
ReviewParticipation of recombination proteins in rescue of arrested replication forks in UV-irradiated Escherichia coli need not involve recombination.
Alternative reproductive cycles make use of different strategies to generate different reproductive products. In Escherichia coli, recA and several other rec genes are required for the generation of recombinant genomes during Hfr conjugation. During normal asexual reproduction, many of these same genes are needed to generate clonal products from UV-irradiated cells. ⋯ The products of the recJ and recQ genes process the blocked replication forks before the resumption of replication and may affect the fidelity of the recovery process. We discuss a model in which several rec gene products process replication forks arrested by DNA damage to facilitate the repair of the blocking DNA lesions by nucleotide excision repair, thereby allowing processive replication to resume with no need for strand exchanges or recombination. The poor survival of cellular populations that depend on recombinational pathways (compared with that in their excision repair proficient counterparts) suggests that at least some of the rec genes may be designed to function together with nucleotide excision repair in a common and predominant pathway by which cells faithfully recover replication and survive following UV-induced DNA damage.
-
Proc. Natl. Acad. Sci. U.S.A. · Jul 2001
Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia.
Chronic hypoxia causes pulmonary hypertension with smooth muscle cell proliferation and matrix deposition in the wall of the pulmonary arterioles. We demonstrate here that hypoxia also induces a pronounced inflammation in the lung before the structural changes of the vessel wall. The proinflammatory action of hypoxia is mediated by the induction of distinct cytokines and chemokines and is independent of tumor necrosis factor-alpha signaling. ⋯ HO-1 transgenic mice were protected from the development of both pulmonary inflammation as well as hypertension and vessel wall hypertrophy induced by hypoxia. Significantly, the hypoxic induction of proinflammatory cytokines and chemokines was suppressed in HO-1 transgenic mice. Our findings suggest an important protective function of enzymatic products of HO-1 activity as inhibitors of hypoxia-induced vasoconstrictive and proinflammatory pathways.
-
Proc. Natl. Acad. Sci. U.S.A. · Mar 2001
An impairment in sniffing contributes to the olfactory impairment in Parkinson's disease.
Although the presence of an olfactory impairment in Parkinson's disease (PD) has been recognized for 25 years, its cause remains unclear. Here we suggest a contributing factor to this impairment, namely, that PD impairs active sniffing of odorants. We tested 10 men and 10 women with clinically typical PD, and 20 age- and gender-matched healthy controls, in four olfactory tasks: (i) the University of Pennsylvania smell identification test; (ii and iii) detection threshold tests for the odorants vanillin and propionic acid; and (iv) a two-alternative forced-choice detection paradigm during which sniff parameters (airflow peak rate, mean rate, volume, and duration) were recorded with a pneomatotachograph-coupled spirometer. ⋯ Furthermore, a patient's ability to sniff predicted his or her performance on olfactory tasks, i.e., the more poorly patients sniffed, the worse their performance on olfaction tests (P < 0.009). Finally, increasing sniff vigor improved olfactory performance in those patients whose baseline performance had been poorest (P < 0.05). These findings implicate a sniffing impairment as a component of the olfactory impairment in PD and further depict sniffing as an important component of human olfaction.
-
Proc. Natl. Acad. Sci. U.S.A. · Mar 2001
Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse.
Heterozygous reeler mice (HRM) haploinsufficient for reelin express approximately 50% of the brain reelin content of wild-type mice, but are phenotypically different from both wild-type mice and homozygous reeler mice. They exhibit, (i) a down-regulation of glutamic acid decarboxylase 67 (GAD(67))-positive neurons in some but not every cortical layer of frontoparietal cortex (FPC), (ii) an increase of neuronal packing density and a decrease of cortical thickness because of neuropil hypoplasia, (iii) a decrease of dendritic spine expression density on basal and apical dendritic branches of motor FPC layer III pyramidal neurons, and (iv) a similar decrease in dendritic spines expressed on the basal dendrite branches of CA1 pyramidal neurons of the hippocampus. ⋯ These findings, coupled with electron-microscopic observations that reelin colocalizes with integrin receptors on dendritic spines, suggest that reelin may be a factor in the dynamic expression of cortical dendritic spines perhaps by promoting integrin receptor clustering. These findings are interesting because the brain neurochemical and neuroanatomical phenotypic traits exhibited by the HRM are in several ways similar to those found in postmortem brains of psychotic patients.