Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Dec 1997
Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase.
gamma-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the mammalian brain, is synthesized by two glutamate decarboxylase isoforms, GAD65 and GAD67. The separate role of the two isoforms is unknown, but differences in saturation with cofactor and subcellular localization suggest that GAD65 may provide reserve pools of GABA for regulation of inhibitory neurotransmission. We have disrupted the gene encoding GAD65 and backcrossed the mutation into the C57BL/6 strain of mice. ⋯ The generally higher basal brain GABA levels in this backcross are significantly decreased by the GAD65-/- mutation, suggesting that the relative contribution of GABA synthesized by GAD65 to total brain GABA levels is genetically determined. Seizure-associated c-fos-like immunoreactivity reveals the involvement of limbic regions of the brain. These data suggest that GABA synthesized by GAD65 is important in the dynamic regulation of neural network excitability, implicate at least one modifier locus in the NOD/LtJ strain, and present GAD65-/- animals as a model of epilepsy involving GABA-ergic pathways.
-
Proc. Natl. Acad. Sci. U.S.A. · Dec 1997
Tobacco smoke is a source of toxic reactive glycation products.
Smokers have a significantly higher risk for developing coronary and cerebrovascular disease than nonsmokers. Advanced glycation end products (AGEs) are reactive, cross-linking moieties that form from the reaction of reducing sugars and the amino groups of proteins, lipids, and nucleic acids. AGEs circulate in high concentrations in the plasma of patients with diabetes or renal insufficiency and have been linked to the accelerated vasculopathy seen in patients with these diseases. ⋯ Glycotoxins are transferred to the serum proteins of human smokers. AGE-apolipoprotein B and serum AGE levels in cigarette smokers were significantly higher than those in nonsmokers. These results suggest that increased glycotoxin exposure may contribute to the increased incidence of atherosclerosis and high prevalence of cancer in smokers.
-
Proc. Natl. Acad. Sci. U.S.A. · Oct 1997
Comparative StudyIntracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189.
The vascular endothelial growth factor (VEGF) has been shown to be a significant mediator of angiogenesis during a variety of normal and pathological processes, including tumor development. Human U87MG glioblastoma cells express the three VEGF isoforms: VEGF121, VEGF165, and VEGF189. Here, we have investigated whether these three isoforms have distinct roles in glioblastoma angiogenesis. ⋯ There was rapid blood vessel growth and breakdown around the tumors caused by cells overexpressing VEGF121 and VEGF165, whereas there was similar vascularization but no eruption in the vicinity of those tumors caused by cells overexpressing VEGF189, and none on the border of the tumors caused by the parental cells. Thus, by introducing VEGF-overexpressing glioblastoma cells into the brain, we have established a reproducible and predictable in vivo model of tumor-associated intracerebral hemorrhage caused by the enhanced expression of single molecular species. Such a model should be useful for uncovering the role of VEGF isoforms in the mechanisms of angiogenesis and for investigating intracerebral hemorrhage due to ischemic stroke or congenital malformations.
-
Proc. Natl. Acad. Sci. U.S.A. · Sep 1997
Type II regulatory subunits are not required for the anchoring-dependent modulation of Ca2+ channel activity by cAMP-dependent protein kinase.
Preferential phosphorylation of specific proteins by cAMP-dependent protein kinase (PKA) may be mediated in part by the anchoring of PKA to a family of A-kinase anchor proteins (AKAPs) positioned in close proximity to target proteins. This interaction is thought to depend on binding of the type II regulatory (RII) subunits to AKAPs and is essential for PKA-dependent modulation of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptor, the L-type Ca2+ channel, and the KCa channel. We hypothesized that the targeted disruption of the gene for the ubiquitously expressed RIIalpha subunit would reveal those tissues and signaling events that require anchored PKA. ⋯ The C subunit colocalized with the L-type Ca2+ channel in transverse tubules in wild-type skeletal muscle and retained this localization in knockout muscle. The RIalpha subunit was shown to bind AKAPs, although with a 500-fold lower affinity than the RIIalpha subunit. The potentiation of the L-type Ca2+ channel in RIIalpha knockout mouse skeletal muscle suggests that, despite a lower affinity for AKAP binding, RIalpha is capable of physiologically relevant anchoring interactions.
-
Proc. Natl. Acad. Sci. U.S.A. · Sep 1997
The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid.
The gamma-aminobutyric acid type A (GABAA) receptor is a transmitter-gated ion channel mediating the majority of fast inhibitory synaptic transmission within the brain. The receptor is a pentameric assembly of subunits drawn from multiple classes (alpha1-6, beta1-3, gamma1-3, delta1, and epsilon1). Positive allosteric modulation of GABAA receptor activity by general anesthetics represents one logical mechanism for central nervous system depression. ⋯ When applied intracellularly to mouse L(tk-) cells stably expressing the alpha6beta3gamma2 subunit combination, etomidate was inert. Hence, the effects of a clinically utilized general anesthetic upon a physiologically relevant target protein are dramatically influenced by a single amino acid. Together with the lack of effect of intracellular etomidate, the data argue against a unitary, lipid-based theory of anesthesia.