Proceedings of the National Academy of Sciences of the United States of America
-
Proc. Natl. Acad. Sci. U.S.A. · Aug 2015
Molecular and preclinical basis to inhibit PGE2 receptors EP2 and EP4 as a novel nonsteroidal therapy for endometriosis.
Endometriosis is a debilitating, estrogen-dependent, progesterone-resistant, inflammatory gynecological disease of reproductive age women. Two major clinical symptoms of endometriosis are chronic intolerable pelvic pain and subfertility or infertility, which profoundly affect the quality of life in women. Current hormonal therapies to induce a hypoestrogenic state are unsuccessful because of undesirable side effects, reproductive health concerns, and failure to prevent recurrence of disease. ⋯ The objective of the present study was to determine the effects of pharmacological inhibition of PGE2 receptors, EP2 and EP4, on molecular and cellular aspects of the pathogenesis of endometriosis and associated clinical symptoms. Using human fluorescent endometriotic cell lines and chimeric mouse model as preclinical testing platform, our results, to our knowledge for the first time, indicate that selective inhibition of EP2/EP4: (i) decreases growth and survival of endometriosis lesions; (ii) decreases angiogenesis and innervation of endometriosis lesions; (iii) suppresses proinflammatory state of dorsal root ganglia neurons to decrease pelvic pain; (iv) decreases proinflammatory, estrogen-dominant, and progesterone-resistant molecular environment of the endometrium and endometriosis lesions; and (v) restores endometrial functional receptivity through multiple mechanisms. Our novel findings provide a molecular and preclinical basis to formulate long-term nonestrogen or nonsteroidal therapy for endometriosis.
-
Proc. Natl. Acad. Sci. U.S.A. · Jul 2015
Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection.
Molecular mechanisms for T-cell immune responses modulated by T cell-inhibitory molecules during tuberculosis (TB) infection remain unclear. Here, we show that active human TB infection up-regulates CD244 and CD244 signaling-associated molecules in CD8(+) T cells and that blockade of CD244 signaling enhances production of IFN-γ and TNF-α. CD244 expression/signaling in TB correlates with high levels of a long noncoding RNA (lncRNA)-BC050410 [named as lncRNA-AS-GSTT1(1-72) or lncRNA-CD244] in the CD244(+)CD8(+) T-cell subpopulation. ⋯ Such inhibition can be reversed by knock down of lncRNA-CD244. Interestingly, adoptive transfer of lncRNA-CD244-depressed CD8(+) T cells to Mycobacterium tuberculosis (MTB)-infected mice reduced MTB infection and TB pathology compared with lncRNA-CD244-expressed controls. Thus, this work uncovers previously unidentified mechanisms in which T cell-inhibitory signaling and lncRNAs regulate T-cell responses and host defense against TB infection.
-
Proc. Natl. Acad. Sci. U.S.A. · Jul 2015
Disruption of prostaglandin E2 receptor EP4 impairs urinary concentration via decreasing aquaporin 2 in renal collecting ducts.
The antidiuretic hormone arginine vasopressin is a systemic effector in urinary concentration. However, increasing evidence suggests that other locally produced factors may also play an important role in the regulation of water reabsorption in renal collecting ducts. Recently, prostaglandin E2 (PGE2) receptor EP4 has emerged as a potential therapeutic target for the treatment of nephrogenic diabetes insipidus, but the underlying mechanism is unknown. ⋯ In addition, EP4 activation or overexpression also increased AQP2 membrane accumulation in a mouse IMCD cell line (IMCD3) stably transfected with the AQP2 gene, mainly through the cAMP/protein kinase A and extracellular signal-regulated kinase pathways. In summary, the EP4 receptor in renal collecting ducts plays an important role in regulating urinary concentration under physiological conditions. The ability of EP4 to promote AQP2 membrane targeting and increase AQP2 abundance makes it a potential therapeutic target for the treatment of clinical disorders including acquired and congenital diabetes insipidus.
-
Proc. Natl. Acad. Sci. U.S.A. · Jun 2015
Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages.
HIV type 1 (HIV-1) infects CD4(+) T lymphocytes and tissue macrophages. Infected macrophages differ from T cells in terms of decreased to absent cytopathicity and for active accumulation of new progeny HIV-1 virions in virus-containing compartments (VCC). For these reasons, infected macrophages are believed to act as "Trojan horses" carrying infectious particles to be released on cell necrosis or functional stimulation. ⋯ Virion release was not triggered by oxidized ATP, whereas the effect of eATP was inhibited by a specific inhibitor of the P2X7 receptor (P2X7R). Thus, eATP triggered the discharge of virions actively accumulating in VCC of infected macrophages via interaction with the P2X7R in the absence of significant cytopathicity. These findings suggest that the microvesicle pathway and P2X7R could represent exploitable targets for interfering with the VCC-associated reservoir of infectious HIV-1 virions in tissue macrophages.
-
Proc. Natl. Acad. Sci. U.S.A. · Jun 2015
Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness.
Pain reduction and enhancement can be produced by means of conditioning procedures, yet the role of awareness during the acquisition stage of classical conditioning is unknown. We used psychophysical measures to establish whether conditioned analgesic and hyperalgesic responses could be acquired by unseen (subliminally presented) stimuli. A 2 × 2 factorial design, including subliminal/supraliminal exposures of conditioning stimuli (CS) during acquisition/extinction, was used. ⋯ The effect was significantly larger for hyperalgesic than analgesic responses (P < 0.001). Results demonstrate that conscious awareness of the CS is not required during either acquisition or extinction of conditioned analgesia or hyperalgesia. Our results support the notion that nonconscious stimuli have a pervasive effect on human brain function and behavior and may affect learning of complex cognitive processes such as psychologically mediated analgesic and hyperalgesic responses.