Journal of neurosurgery
-
Journal of neurosurgery · Jun 1998
Comparative StudyEarly metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage.
The authors previously demonstrated, in a large-animal intracerebral hemorrhage (ICH) model, that markedly edematous ("translucent") white matter regions (> 10% increases in water contents) containing high levels of clot-derived plasma proteins rapidly develop adjacent to hematomas. The goal of the present study was to determine the concentrations of high-energy phosphate, carbohydrate substrate, and lactate in these and other perihematomal white and gray matter regions during the early hours following experimental ICH. ⋯ These results, which demonstrate normal to increased high-energy phosphate and carbohydrate substrate concentrations in edematous perihematomal regions during the early hours following ICH, are qualitatively similar to findings in other brain injury models in which a reduction in metabolic rate develops. Because an energy deficit is not present, lactate accumulation in edematous white matter is not caused by stimulated anaerobic glycolysis. Instead, because glutamate concentrations in the blood entering the brain's extracellular space during ICH are several-fold higher than normal levels, the authors speculate, on the basis of work reported by Pellerin and Magistretti, that glutamate uptake by astrocytes leads to enhanced aerobic glycolysis and lactate is generated at a rate that exceeds utilization.
-
Journal of neurosurgery · Jun 1998
Comparative StudyAntivasospastic and brain-protective effects of a hydroxyl radical scavenger (AVS) after experimental subarachnoid hemorrhage.
The radical scavenger (+/-)-N,N'-propylenedinicotinamide (AVS) was shown recently to ameliorate delayed neurological deficits resulting from ischemia in patients who have had an aneurysmal subarachnoid hemorrhage (SAH). The aim of this study was to evaluate the effect of AVS administration after experimental SAH on 1) behavioral deficits; 2) angiographically confirmed basilar artery (BA) spasm; and 3) blood-brain barrier (BBB) permeability changes. ⋯ These results demonstrate useful antivasospastic and brain-protective actions of AVS after induction of experimental SAH and provide support for observations of beneficial effects of AVS made in the clinical setting.